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ABSTRACT

We study the design of synthesis filters in noisy filter
bank systems using anH1 point of view. For unitary anal-
ysis polyphase matrices we obtain an explicit expression for
the minimum achievable disturbance attenuation. Numeri-
cal examples and comparisons with existing methods are
also included.

1. INTRODUCTION

Multirate filter banks systems have been a subject of exten-
sive studies (see [1]-[3] and the references therein) and are
widely used in many application areas (such as speech and
image compression, joint source channel coding, adaptive
systems, and others). The design of perfect reconstruction
filter banks, capable of exactly replicating the input signal,
has received particularly high attention. In most of the re-
search, the subbands of the filter bank system are assumed
noise free. Figure 1 illustrates such a filter bank with two
subband channels. The analysis filtersH0(z) andH1(z) de-
compose the input signal into subband components, which
are then decimated by a factor of 2. The signal is recon-
structed by upsampling by a factor of 2 followed by filter-
ing with synthesis filtersF0(z) andF1(z). The decimated
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Figure 1:Two-channel filter bank

signals in the subbands may be, for example, encoded and
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transmitted (as in speech comparison applications), or be
coded for storage, at which point the signal may be com-
pressed and some information lost. The perfect reconstruc-
tion approach studied in the literature, assumes no loss of
information in the subbands. However, signal quantization
and noise corruption in the subbands, as well as computa-
tional roundoff, are always present in practical filter banks
systems ([4],[5]).

In order to deal with noise-corrupted filter bank sys-
tems, multirate Kalman synthesis filtering has been recently
proposed ([7]). In ([8]), methods for optimal signal recon-
struction in noisy nonuniform filter banks, using Kalman
andH1 filters, have also been proposed for cases when the
input signal model is unaccessible. The Kalman filtering ap-
proaches require a priori knowledge of the (first and second-
order) noise statistics. Therefore in applications involving
compression, quantization, etc., where the noise statistics
are not readily known, the performance of the synthesis fil-
ters may be suspect.

H1 estimation, on the other hand, requires no statisti-
cal assumptions, performs a worst-case design, and is there-
fore robust with respect to noise uncertainty. Moreover, the
H1 approach allows one to explicitly introduce finite delay
into the synthesis filter design. [Conventional IIR perfect
reconstruction filters are often non-causal, which requires
either infinite delay or some form of truncation.] TheH1

optimization approach had been proposed earlier in [6] but,
unlike the current paper, considered only the noise-free sub-
band case.

To begin our study, we will use a polyphase represen-
tation of the filter bank shown in Figure 1. Performing a
type-1 polyphase decomposition of the analysis filters ([1]),
one can define the polyphase analysis matrixH(z) as�

H0(z)
H1(z)

�
= H(z2)

�
1
z�1

�
; (1)

while the polyphase synthesis matrix is found by perform-
ing a type-2 polyphase decomposition of the synthesis fil-
ters,

[F0(z) F1(z)] =
�
z�1 1

�
F (z2): (2)

Since we are interested in estimatingxi�d, the delayed ver-
sion of the input signal (d > 0), performing blocking of the
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Figure 2:Polyphase equivalent to 2-band noisy filter bank

input and the output of the filter bank leads to the equivalent
system in Figure 2, where the delay transfer matrix is of the
form ([6])

L(z) =

8>><
>>:

z�d
�

1 0
0 1

�
if m = 2d+ 1;

z�d
�

0 z
1 0

�
if m = 2d:

The system in Figure 2 is the standard model for a gen-
eral estimation problem, where the goal is to design the
causal linear time-invariant estimatorF (z) to estimate the
input sequencefxi�dg from the observationsfyig.

We should also mention that extensive studies of orthog-
onal filter banks (often in regard to perfect reconstruction
solutions) can be found in the literature (see, e.g., [1]). A
common choice for the analysis filters are those leading to
paraunitary (or scaled paraunitary) polyphase analysis ma-
trices. Therefore in the next section we shall consider the
design and performance of such filter banks from theH1

estimation point of view.

2. H1 APPROACH

With the adopted polyphase representation of the filter bank,
the design of the synthesis polyphase matrix can be regarded
as a special case of the estimation problem formulation,
where the observationsfyig are the noise corrupted sub-
bands signals. The induced transfer matrix mapping the un-
known disturbancesxi and��1ni to the estimation errors
is

TF (z) = [L(z)� F (z)H(z) � �F (z)]; (3)

where�2 represent the intensity of the noise. The goal of
H1 estimation is to choose a causalF (z) to minimize the
H1 norm ofTF (z). Since theH1 norm of a stable LTI
system is the square-root of its maximum energy gain (more
precisely, itsl2-induced norm), the goal inH1 estimation
is to solve the problem:

inf
causalF (�)

P
i(xi�d � x̂i�d)�(xi�d � x̂i�d)P

i x
�
i xi + ��2

P
i n

�
ini

4
= 
2opt: (4)

We should further remark that the frequency domain
characterization of theH1 norm is given by

kTF (z)k1 = sup
0�!�2�

��
�
TF (e

j!)
�
; (5)

where ��(�) denotes maximum singular value of its argu-
ment.

There is also a related noncausalH1 estimation prob-
lem (which is the same estimation problem as (6) only with
the causality constraint removed) which is easy to solve
(see, e.g., [9]) and has the optimal norm


s =


L(z)[I + ��2H�(z��)H(z)]�1L�(z��)



1=2
1 ; (6)

while one corresponding noncausalH1-optimal solution is
given by the Wiener smoother,

Fs(z) = L(z)H�(z��)
�
�2I +H(z)H�(z��)

��1
: (7)

Note, clearly, that
s � 
opt since noncausal solutions should
outperform causal ones.

We notice that for the special case of a paraunitary anal-
ysis matrixH(z), i.e., whenH(z)H�(z��) = H�(z��)H(z) =
I , we have


2s =
�2

1 + �2

and

Fs(z) =
1

1 + �2
L(z)H�(z��)

CausalH1 estimation has been studied in [9] and con-
ditions for the existence of solutions derived. However, ex-
plicit closed-form expressions for
opt, the minimum achiev-
able disturbance attenuation, are not always available. Nonethe-
less, for paraunitary matricesH(z), an expression for
opt
can be obtained. To this end, consider theH1 subopti-
mal problem of solving for a causal estimatorF (z) which
achieves

k[L(z)� F (z)H(z) � �F (z)]k1 < 
 (8)

Assuming a paraunitaryH(z), (8) implies

[L(z)� F (z)H(z)] [L(z)� F (z)H(z)]
�
+�2F (z)F �(z��) < 
2

or, equivalently,

[L(z)� F (z)H(z)]H�(z��)H(z) [L(z)� F (z)H(z)]
�

+�2F (z)F �(z��) < 
2;

and, after some algebraic simplifications,
�
L(z)H�(z��)p

1 + �2
�
p

1 + �2F (z)

� �
L(z)H�(z��)p

1 + �2
�
p

1 + �2F (z)

��



+ �2

1+�2 < 
2:

Introducing(
0)2 = 
2 � �2

1+�2 , the last inequality implies




 1p

1 + �2
L(z)H�(z��)�

p
1 + �2F (z)






1

< 
0 (9)

Let us denote 1p
1+�2

L(z)H�(z��) = T (z). Our goal is

to find a causalF (z) which is minimizes (9). Define the
Hankel operator associated withT (z) =

P1
�1 tiz

�i as

HT =

2
66664

t�1 t�2 t�3 � � �
t�2 t�3 � � �
t�3

...
...

3
77775

By Nehari’s theorem ([10]),

inf
causalF (z)

k[T (z)�
p

1 + �2F (z)]k1 = ��(HT ) (10)

Hence the achievable
-level in (5) is given by


2opt =
�2

1 + �2
+ ��2(HT ) (11)

Clearly, when in additionH(z) is FIR, if the delayd is
greater than the length ofH(z), the systemT (z) is going
to be causal so that the Hankel operator is zero,
2opt =
�2=(1 + �2), and the optimal solution is given by:

F (z) =
1

1 + �2
L(z)H�(z��): (12)

Hence, whenH(z) is paraunitary and FIR, a delay equal to
the length ofH(z) suffices to obtain the same performance
as the non-causal solution.

For IIR filters, or for delays less than the length of the
FIR H(z), (11) offers a way of relating the achievable

performance of the filter bank system to the delayd. We
should remark that computation of the Hankel norm of a
transfer matrix is straightforward and simply requires com-
puting the maximum singular value of an�nmatrix, where
n is the transfer matrix’ McMillan degree.

It is also of interest to obtain those values of delayd
that ensures that the performance of the estimator exceeds
that of doing no estimation. In other words: of determining
the value of delay that ensures
opt < 1 (sinceF (z) = 0 re-
sults in
 = 1). This “worst-case non-estimability” has been
studied in [11]-[12], from which it follows that that choos-
ing d greater than or equal to the number of non-minimum
phase zeros ofH(z) is a sufficient condition for achieving

opt < 1. [In all the numerical examples performed, it was
observed that this condition is also necessary.]

Finally, once
opt has been obtained, the actual filters
F (z) can be found via standardH1 techniques.

3. SIMULATION RESULTS

We first consider the performance of theH1 optimal syn-
thesis filters given IIR analysis filters. The fifth order But-
terworth filters shown in Figure 3 are chosen for the anal-
ysis filters (note that theH1 approach does not put any
constraint on the choice of the analysis filters; the Butter-
worth filters are chosen for simplicity). The noise in the sub-
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Figure 3:Frequency response of analysis filters

bands was simulated as both additive white Gaussian noise
and quantization noise; in the latter case, the noise variance
used for the design was approximated as� = q2=12, where
[�q=2; q=2] is the range of the possible quantizer errors.
The designedH1 optimal synthesis filters for�2 = 0:1
are shown in Figure 4. For the performance comparison we
adopt the SNR of the input signal to the reconstruction error
([7],[13])

SNRr = 10 log10

� P
k x

2(k)P
k(x(k � d)� x̂(k))2

�

Preliminary simulation results imply that for larged, the
performance of the Kalman filter andH1 design coincide.
This is expected since both filters, asd increases, converge
to the Wiener smoother. Asd is decreased, Kalman filter
marginally outperformsH1 optimal synthesis filters. The
performance comparison is shown in Table 1.

We have also performed the design of the synthesis fil-
ters given FIR analysis filters. The analysis filters are32-tap
linear phase filters adopted from [13]. Both theH1 optimal
synthesis filters and Kalman filter, as well as the suggested
solution from [13], perform identically whend is greater
than or equal to the length of the FIR filter, i.e.,d � 32
(of course, solution from [13] does not consider the pres-
ence of the noise, so it has to be scaled according to the
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Figure 4:Frequency response ofH1 optimal synthesis fil-
ters

d 3 7 11
KalmanSNRr 13.3 dB 31.5 dB 42.2 dB
H1 SNRr 12.8 dB 31.2 dB 42.1 dB

Table 1:SNRr comparison of the filter banks with the3rd

order Butterworth analysis filters for variousd

discussion in Section 2). Ford < 32, the Kalman filter out-
performs theH1 filter. For example, when the input signal
with rms(x) = 1 was quantized in the subbands with a pre-
cision of 8 bits, the performance comparison is shown in
Table 2.

4. SUMMARY

The design of multirate filter banks often assumes that the
subbands of the filter bank are noise free. However, quanti-
zation and encoding cause the corruption of the signal in the
subbands and may thus significantly deteriorate the recon-
structed signal. Moreover, the statistical properties of such
mechanisms are often hard to determine so that statistical
methods (such as the Kalman filter) for reconstructing the
corrupted signal are not always applicable.

d H1 SNRr KalmanSNRr

21 23.6 dB 24.9 dB
32 42.9 dB 42.9 dB

Table 2:SNRr comparison of the filter banks with the anal-
ysis filters as in [13] for variousd

In this paper, we have attempted to address the signal
reconstruction problem from anH1 estimation point of
view, which provides robustness against statistical uncer-
tainty. We give an explicit solution for the case of orthogo-
nal analysis filters.
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