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ABSTRACT transmitted (as in speech comparison applications), or be

We study the design of synthesis filters in noisy filter c0ded for storage, at which point the signal may be com-
bank systems using &> point of view. For unitary anal- pressed and some information lost. The perfect reconstruc-

ysis polyphase matrices we obtain an explicit expression fortion approach studied in the literature, assumes no loss of
the minimum achievable disturbance attenuation. Numeri-information in the subbands. However, signal quantization

cal examples and comparisons with existing methods are2nd noise corruption in the subbands, as well as computa-
also included. tional roundoff, are always present in practical filter banks

systems ([4],[5]).
In order to deal with noise-corrupted filter bank sys-
tems, multirate Kalman synthesis filtering has been recently

Multirate filter banks systems have been a subject of exten_propo_sed_([?])._ In ([8]), ”f'eth"d_s for optimal S|_gnal recon-
struction in noisy nonuniform filter banks, using Kalman

sive studies (see [1]-[3] and the references therein) and are nd > filters, have also been proposed for cases when the

widely used in many application areas (such as speech an . . . o
image compression, joint source channel coding, adaptive'npUtS'gnal model is unaccessible. The Kalman filtering ap-

systems, and others). The design of perfect reconstructiorPrO"leheS require a priori knowledge of the (first and second-

filter banks, capable of exactly replicating the input signal, g(r)?ﬁr)r::S'is’oenSta;';::gié;;erggrev'vl:&plt'ﬁ:tf;zemgg ;II'STI% S
has received particularly high attention. In most of the re- P 1 ' . o
search, the subbands of the filter bank system are assumed'© not readily known, the performance of the synthesis fil-
noise free. Figure 1 illustrates such a filter bank with two ters may be suspect.

oo . _—
suboand channels. Th anaysis k) anc ) de. 1 €stmaton,on the atherand, rutres o sttt
compose the input signal into subband components, which P P an,

are then decimated by a factor of 2. The signal is recon-zf LObL:z;VCV;]tgﬁszegf,ggZ'sﬁ-g?fe-ssg]éygg?ﬁzvger];he
structed by upsampling by a factor of 2 followed by filter- PP W Xplicity ucein y

ing with synthesis filters, (=) and F1 (2). The decimated into the syqthegls filter design. [Conventional .IIR perfgct
reconstruction filters are often non-causal, which requires

either infinite delay or some form of truncation.] THE®
optimization approach had been proposed earlier in [6] but,
¢ 2 f2 Fo(z) unlike the current paper, considered only the noise-free sub-
. band case.
x z To begin our study, we will use a polyphase represen-
tation of the filter bank shown in Figure 1. Performing a
type-1 polyphase decomposition of the analysis filters ([1]),
Fi(2) one can define the polyphase analysis m&i#ix) as

| | =

1. INTRODUCTION
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Figure 1:Two-channel filter bank

1

Z—l :| ) (1)
while the polyphase synthesis matrix is found by perform-

signals in the subbands may be, for example, encoded ant{fg?sa type-2 polyphase decomposition of the synthesis fil-
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We should further remark that the frequency domain
characterization of th& > norm is given by

T vi id Tr(2)|o = sup & [Tr(e/ 5

> = p o |1Fr(e )

o H(2) F(z) — 1T%(2)]l0o S [Tr(e’)] (5)
whereg(-) denotes maximum singular value of its argu-
ment.

Ti—d There is also a related noncaug#t® estimation prob-

lem (which is the same estimation problem as (6) only with
the causality constraint removed) which is easy to solve

. ) o (see, e.g., [9]) and has the optimal norm
Figure 2:Polyphase equivalent to 2-band noisy filter bank

o ks L 1/2
v = | L) + 0 2H* (z ) H(2)] 'L (= )| %, (
input and the output of the filter bank leads to the equivalent

o o while one corresponding noncaugat’-optimal solution is
system in Figure 2, where the delay transfer matrix is of the b g P

given by the Wiener smoother,

form ([6])
Fy(2) = L(z)H* () [T + H)H* (=)', (@
—d[éﬂ o 2d 1, (2) = L) H" (=) | H (=] (D)
L(z) = 0 2 Note, clearly, thay, < v,,: since noncausal solutions should
274 [ 10 ] if m = 2d. outperform causal ones.

We notice that for the special case of a paraunitary anal-
The system in Figure 2 is the standard model for a gen-ysis matrixH (z), i.e., whenH (2) H*(z~*) = H* (2 *)H(z) =
eral estimation problem, where the goal is to design the I, we have
causal linear time-invariant estimatéi(z) to estimate the 2 o
input sequencéz;_,;} from the observationéy; }.
We should also mention that extensive studies of orthog- and
onal filter banks (often in regard to perfect reconstruction Fy(z) = 1 _L(z)H* (2~
solutions) can be found in the literature (see, e.g., [1]). A 1402
common choice for the analysis filters are those leading to  CausalH > estimation has been studied in [9] and con-
paraunitary (or scaled paraunitary) polyphase analysis ma-ditions for the existence of solutions derived. However, ex-
trices. Therefore in the next section we shall consider the plicit closed-form expressions fof,:, the minimum achiev-

design and performance of such filter banks from M able disturbance attenuation, are not always available. Nonethe-
estimation point of view. less, for paraunitary matricd$(z), an expression fof,,:
can be obtained. To this end, consider #ié&° subopti-
2 H> APPROACH mal problem of solving for a causal estimat®(z) which
achieves
With the adopted polyphase representation of the filter bank,
the design of the synthesis polyphase matrix can be regarded I[L(z) = F(2)H(2) —aF(2)][lo <7 (8)

as a special case of the estimation problem formulation
where the observationgy;} are the noise corrupted sub-
bands signals. The induced transfer matrix mapping the un-[7,(z) — F(2)H(2)] [L(z) — F(2)H (2)]" +02F (2)F* (2 *) < 42
known disturbances; ando—'n; to the estimation errors
is or, equivalently,

Tp(2) = [L(z) - F(2)H(z) —oF(x)], (3)

whereo? represent the intensity of the noise. The goal of
H®° estimation is to choose a caudd(z) to minimize the
H® norm of Tr(z). Since theH> norm of a stable LTI +0?F(2)F*(27%) <7,
system is the square-root of its maximum energy gain (more

precisely, its2-induced norm), the goal il > estimation
is to solve the problem: and, after some algebraic simplifications,

. > i (@ica = Fi—a)"(Tima — Fi—a) & L(z)H*(27*) } { 2)H*(27%) A
inf : 2 4 "2 — /14 02F(2 22 ) 1+ 02F(2
causal F(-) E Z.Z’:l'z + o2 E Zn:nl opt ( ) V1402 V14 o2 g ( )

'Assuming a paraunitardf (z), (8) implies

z) = F(2)H(z)]| H" (2" ")H(2) [L(2) — F(2)H (2)]"




2
+117 < ’)/2.

Introducing(y')? = % — the last inequality implies

+ 11521
1
——L(2)H*(27*) =1+ 02F(z <+ (9
Hm()() @ <r o
Let us denotﬁL( )H*.(z_*') .:.T(z). Our g.oal is
to find a causaF'(z) which is minimizes (9). Define the
Hankel operator associated withz) = Y>> ¢;27" as
t_1 t_ t_g---
t_y t_g -
Hr = t
By Nehari’s theorem ([10]),
inlfF( : ~V1+0*F(2)]llo = 3(H7) (10)
Hence the achievabtelevel in (5) is given by
2 _ o’ _2
Yopt = 71210 (HT) (11)

Clearly, when in additionH (z) is FIR, if the delayd is
greater than the length df (z), the systenf’'(z) is going
to be causal so that the Hankel operator is zef, =
0?/(1+ ¢?%), and the optimal solution is given by:

1

F(z) = WL(Z)H*(Z ).

Hence, wherH (z) is paraunitary and FIR, a delay equal to
the length ofH (z) suffices to obtain the same performance
as the non-causal solution.

For IIR filters, or for delays less than the length of the
FIR H(z), (11) offers a way of relating the achievabje
performance of the filter bank system to the dedayWe
should remark that computation of the Hankel norm of a
transfer matrix is straightforward and simply requires com-
puting the maximum singular value ofiax n. matrix, where
n is the transfer matrix’ McMillan degree.

It is also of interest to obtain those values of detay

(12)

3. SIMULATION RESULTS

We first consider the performance of th&° optimal syn-
thesis filters given IIR analysis filters. The fifth order But-
terworth filters shown in Figure 3 are chosen for the anal-
ysis filters (note that théZ>> approach does not put any
constraint on the choice of the analysis filters; the Butter-
worth filters are chosen for simplicity). The noise in the sub-
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Figure 3:Frequency response of analysis filters

bands was simulated as both additive white Gaussian noise
and gquantization noise; in the latter case, the noise variance
used for the design was approximatedras ¢ /12, where
[—q/2,q/2] is the range of the possible quantizer errors.
The designed?> optimal synthesis filters fos? = 0.1

are shown in Figure 4. For the performance comparison we
adopt the SNR of the input signal to the reconstruction error

Zk z’ (k)

([71.[13])
2@k —d) - f(k))2>

Preliminary simulation results imply that for lardethe
performance of the Kalman filter arf@> design coincide.
This is expected since both filters, @increases, converge

SNR, =10log;, <

that ensures that the performance of the estimator exceed® the Wiener smoother. Agis decreased, Kalman filter

that of doing no estimation. In other words: of determining
the value of delay that ensures,; < 1(sinceF(z) = O re-
sults iny = 1). This “worst-case non-estimability” has been
studied in [11]-[12], from which it follows that that choos-
ing d greater than or equal to the number of hon-minimum
phase zeros off (z) is a sufficient condition for achieving
Yopt < 1. [In all the numerical examples performed, it was
observed that this condition is also necessary.]

Finally, oncey,,: has been obtained, the actual filters
F(z) can be found via standadd* techniques.

marginally outperformg? > optimal synthesis filters. The
performance comparison is shown in Table 1.

We have also performed the design of the synthesis fil-
ters given FIR analysis filters. The analysis filters3r¢ap
linear phase filters adopted from [13]. Both tH&® optimal
synthesis filters and Kalman filter, as well as the suggested
solution from [13], perform identically whed is greater
than or equal to the length of the FIR filter, i.€.,> 32
(of course, solution from [13] does not consider the pres-
ence of the noise, so it has to be scaled according to the
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Figure 4:Frequency response &f>° optimal synthesis fil-

ters

d 3 7 11
KalmanSNR, | 13.3dB| 31.5dB| 42.2dB
H> SNR, 12.8dB| 31.2dB| 42.1dB

Table 1: SN R, comparison of the filter banks with ti3&¢
order Butterworth analysis filters for various

discussion in Section 2). Fdr< 32, the Kalman filter out-
performs theH > filter. For example, when the input signal
with rms(z) = 1 was quantized in the subbands with a pre-
cision of 8 bits, the performance comparison is shown in

Table 2.

4. SUMMARY

The design of multirate filter banks often assumes that the
subbands of the filter bank are noise free. However, quanti-

In this paper, we have attempted to address the signal
reconstruction problem from af/ > estimation point of
view, which provides robustness against statistical uncer-
tainty. We give an explicit solution for the case of orthogo-
nal analysis filters.
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