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ABSTRACT
Weyl-Heisenberg frames are complete signal representations
corresponding to rectangular tiling of the time-frequency
plane. Extensions of these frames are obtained in the ro-
tated time-frequency planes by using the fractional Fourier
transformation. It is shown that rotation does not affect the
frame bounds. For some specific angles, lattices in rotated
coordinates will map to the lattices in the Cartesian coor-
dinates. The rotated Weyl-Heisenberg frames obtained are
more suitable for chirp-like signal analysis and synthesis.

1. INTRODUCTION

Weyl-Heisenberg frames (WHFs) constitute the basic the-
ory behind the discrete short-time Fourier transform (STFT),
or in particular Gabor expansion [1]. Decomposition of sig-
nals into these frames provide valuable information about
the local structures of the signal in the time-frequency plane.
However, for signals that have chirp-like components, WHFs
can not provide compact representations. In order to repre-
sent such signals effectively, frames in rotated coordinates
are developed. Indeed, the most compact and efficient way
to represent these signals is to use the chirplet decomposi-
tion [2], [3], [4]. However, in cases where computation time
is critical, one may rather prefer to use the rotated frames.
Different kinds of angular tilings of the time-frequency plane
has been shown in [5].

The rotated Weyl-Heisenberg frames (RWHFs) are ob-
tained by applying the fractional Fourier transform (FRFT)
operator to the WHFs. Using the unitary property of the
FRFT, it is shown that rotation does not change the frame
bounds. At some discrete angles, a lattice mapping from ro-
tated to Cartesian coordinates is obtained. Whenever these
angles are used, computationally more efficient form of the
rotated frames are obtained.

2. WEYL-HEISENBERG FRAMES AND THE
FRACTIONAL FOURIER TRANSFORM

The set of the time-frequency shifted window functions
fgq;p(t)g(q;p)2Z2 constitutes a WHF if and only if for any

f(t) 2 L2(R) [1],
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is satisfied wheregq;p(t)
�
= g(t � q�c)ejp�dt andA >

0; B < 1;�c;�d > 0. If fgq;p(t)g constitutes a frame,
then there exists a dual frame denoted asf~gq;p(t)g such that
anyf(t) 2 L2(R) can be written as
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< f; gq;p > ~gq;p(t): (2)

In [1], series computation of~g(t) from g(t) is described.
The oversampling ratio is given byR = 2�=(�c�d), and
it should be greater than or equal to 1 to obtain a complete
representation.R = 1 corresponds to critical sampling or
Nyquist rate. To obtain the RWHFs from this set, we need
the FRFT operator. The FRFT of a functionf(t) is defined
in [6] as,
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where�� is the rotation operator. The minus sign is put
in this equation to define the counter clockwise direction in
the time-frequency plane as the positive direction of rota-
tion. Using the rotation operator int � ! plane results in a
confusion of manipulating time and frequency variables of
different units as having the same unit. As an example, in
Eqn. (8), time and frequency variables are added as if they
have the same unit. In order to solve this problem, a method
of normalization has been proposed in [7]. Defining the nor-
malization scale

S �
=

s
Duration of the signal

Bandwidth of the signal
;

secp
rad

(4)



then the normalized time-frequency variables are given as
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After this normalization the duration and bandwidth of
the signal have the same length and the same unit. In this
work, it is assumed that this dimensional normalization is
performed beforehand.

3. FRAMES IN ROTATED COORDINATES

We defines
�
=
q

�c
�d , and restricts to bes 2 Z+. Then

the following lemma defines a lattice mapping from rotated
to Cartesian coordinates, as illustrated in Fig. 1. A specific
case of this lattice for�m = �=4 has been recently used for
Gabor expansion [8], [9].

Lemma 1 Let the discrete angles�m be defined as
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wherem1 = 2s2 �m , m2 = 2s2 +m, andm 2 Z. The
intervals are given byI1 = [�s2; s2], I2 = (s2; 2s2), and
I3 = (�2s2;�s2). Then the projections of rotated lattice
points(q�c; p�d) in t�m � !�m plane constitute a rect-
angular lattice int � ! plane whose indexes are given by
(l(q; p)�u; k(q; p)��) where
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and�u;�� 2 R+, k(q; p); l(q; p) 2 Z.

Proof: A point (t�; !�) in the rotated coordinates is
mapped to a point(t; !) in the Cartesian coordinates by a
linear transformation

t = t� cos�� !� sin�

! = t� sin�+ !� cos�: (8)

If the time-frequency centers of the atoms in the rotated co-
ordinates are constructed like the WHFs i.e.,(t�; !�) =
(q�c; p�d), then the projections of these points on the Carte-
sian coordinates are given from Eqn. (8) as

t = q�c cos�� p�d sin�

! = q�c sin�+ p�d cos�: (9)

i) �m = arctan(ms2 ) for �s2 � m � s2, then one can
write

cos�m =
s2p

m2 + s4
; sin�m =

mp
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Putting these into Eqn. (9), and reordering of the terms yield
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Partsii) and iii) can be proved easily with similar manipu-
lations.

It can be easily shown that this lemma can be general-
ized to include the case1=s 2 Z+. After finding the pairs
(l(q; p)�u; k(q; p)��), they can be reordered such thatl 2
L = fl(q; p)gq;p andKl = fk(q0; p0) : l = l(q0; p0)g. Then
the reordered points can be written as(l; k), wherel 2 L
andk 2 Kl. We define

gm(t)
�
= (��mg)(t) (13)

gm;l;k(t)
�
= gm(t� l�u)ejk��t (14)

similar definitions are valid for the dual frame~g(t) also.

Theorem 1 Letgq;p(t) constitute a Weyl-Heisenberg frame
with frame boundsA andB and with the dual frame~gq;p(t),
then

i) For each�m fixed,fgm;l;k(t)gl;k constitutes a frame
with frame boundsA andB.

ii) Dual frame ofgm;l;k(t) is given by~gm;l;k(t).

Proof: i) Sincegq;p(t) is a frame with boundsA andB,
for anyf(t) 2 L2(R) the following can be written
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j< f; gq;p >j2 � Bjjf jj2; (15)

where

< f; gq;p >=

Z
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f(t)g�(t� q�c)e�jp�dtdt: (16)

Since the rotation operator is inner product preserving, we
can write< f; gq;p >=< ��mf;��mgq;p >. Defining

fm(t)
�
= (��mf)(t) this becomes

< f; gq;p >=< fm; e
j�gm;l;k >; (17)



Figure 1: Lattice mapping for�m = 45�.

wheregm;l;k(t) is defined in Eqn. (14), and� is found as
� = sin�m cos�m

2 (p2�d� q2�c) + qp�c�dsin2�m.
Since rotation operation is inner product preserving, then

jjfmjj = jjf jj. Putting Eqn. (17) into Eqn. (16), and reorder-
ing of the summation indexes yield

Ajjf jj2 �
X
k2Kl

X
l2L

j< f; gm;l;k >j2 � Bjjf jj2; (18)

which meansgm;l;k(t) constitutes a frame for each�m with
frame boundsA andB.

ii) Since~gq;p(t) is the dual frame ofgq;p(t), then any
f(t) 2 L2(R) can be written as

f(t) =

1X
q=�1

1X
p=�1

< f; gq;p > ~gq;p(t): (19)

Transforming both sides by��m and using Eqn. (17) yields

fm(t) =
X
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< fm; gm;l;k > ~gm(t� l�u)ejk��t:

(20)
Therefore, one can write for anyf(t) 2 L2(R)

f(t) =
X
k2Kl

X
l2L

< f; gm;l;k > ~gm;l;k(t): (21)

This means,~gm;l;k is the dual frame ofgm;l;k for each�m.
The rotated frame of Gaussians are shown in Fig. 2.
Example: As an example, window function is chosen as

Gaussiang(t) = 1
2�1=4

e�
t2

32 . The redundancy ratio is set to
R = 4. The time and frequency discrete step lengths are

Figure 2: Rotated frame of Gaussians. Contour plots of the
Wigner distributions of the time-frequency shifted windows
are shown.

chosen as�c = 4
p

�
2 and�d = 1

4

p
�
2 , respectively. The

rotated windowgm(t) for �m = �=4 is found by applying
the FRFT to the Gaussian which yields,

gm(t) =
e�j0:362

64:25�1=4
e�(0:062�j0:029)t

2

: (22)

The sampling rate is chosen as�t =
q

2�
N , whereN =

256 is the signal length. In Fig. 3, the Gaussian, its rotated
and time frequency shifted versions are shown. The Wigner
distribution ofgm;l;k(t) is given in Fig. 4.
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Figure 4: The Wigner distribution ofgm;l;k(t)
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Figure 3: (a)The Gaussian functiong(t), (b) gm(t), (c) gm(t� l�u), (d) gm;l;k(t) = gm(t� l�u)ejk��t.

4. CONCLUSIONS

In this paper, rotated frames are developed from the WHFs
by using the FRFT. First a lattice mapping from rotated to
Cartesian coordinates is given, then the rotated frames are
introduced. It is shown that, the rotation does not change
the frame bounds. These frames are important for the anal-
ysis of chirp-like energy distributions in the time-frequency
plane. They provide computationally more efficient ways
to represent chirp-like signals compared to the chirplet de-
compositions.
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