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ABSTRACT

In this paper combined source-channel coding is considered for
the case of predictive vector quantization. A design algorithm for
channel optimized predictive vector quantizers is proposed. Under
reasonable assumptions, the optimal encoder is presented and a
sample iterative design method that simultaneously optimizes the
predictor and the codebook is derived. We also demonstrate that
this design method can be used to obtain index assignments that
are advantageous to what is obtained by post process index assign-
ment algorithms. Results are presented for a correlated Gauss-
Markov process and for speech LSF parameters.

1. INTRODUCTION

Vector quantization (VQ) schemes that exploit interframe corre-
lation have shown very promising results in many speech coding
applications, e.g. quantization of the spectrum parameters [1, 2].
The most popular method is predictive VQ (PVQ) which is sim-
ply a vector generalization of scalar DPCM. It has however been
argued that PVQ performance rapidly deteriorates when channel
noise is introduced [2]. Recently, it has been shown that these
problems can be circumvented, e.g. [1], and hence PVQ is an ad-
vantageous alternative to memoryless quantization also for noisy
channels.

Noisy channel performance can be improved by finding an in-
dex assignment (IA) that minimizes the distance between codevec-
tors with similar binary codewords [3]. Robustness against chan-
nel errors is thus obtained without using any explicit knowledge
about the channel.

If some knowledge about the channel can be incorporated in
the design, performance can be significantly improved. This is
usually referred to as channel optimized VQ (COVQ) [3, 4]. Here
we propose a new method for channel optimized predictive VQ
(COPVQ) design. It is also demonstrated that the COPVQ design
method can be used to obtain index assignments for PVQ that are
advantageous to what is obtained by post process index assignment
algorithms.

2. CHANNEL OPTIMIZED PVQ

The basic idea in COVQ design is to adopt a distortion measure
that takes the channel characteristics into consideration. In this
work we assume a discrete memoryless channel which can be de-
scribed by its transition probabilitiespjnjin . That is, the probabil-
ity that indexjn is received given that indexin was sent at time
n.
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A predictive VQ scheme is depicted in Figure 1. The most
common choice of predictor is a linear autoregressive predictor

x̂n =

PX
k=1

Ak~xn

whereP is the predictor order andAk are predictor matrices. We
understand that the prediction vectors in the encoder and the de-
coder (̂xn andx̂0n) are not necessarily equal if the channel is noisy.
This fact must be compensated for in the design of the COPVQ en-
coder. Methods for improvement of predictors for noisy channels
can be found in, e.g. [1, 5]. It is clear that the predictions,x̂n
andx̂0n, which determine the state of the encoder and decoder, are
solely functions of the history of indices,in�10 = fikg

n�1
k=0 and

jn�10 = fjkg
n�1
k=0 , up to timen � 1 and the initial stateŝx0 and

x̂00. For simplicity, we assume these two initial states to be equal.

3. DISTORTION MEASURE FOR COPVQ

Assume that the input process is stationary with zero mean and
that the expected value of the distortion at timen can be used as
performance measure. Note that the indices,in0 , of the encoder
should be chosen all at the same time when the whole sequence to
quantize is available in order to minimize the total distortion. This
is of course not realistic. In this work, as most other work on PVQ,
we will assume that the encoder must make a choice for the best
index every frame and no extra delay is thus allowed. Therefore,
we define the distortion measure to minimize as the expected value
of the distortion, given the history of previous indicesin�10 . Using
this definition we obtain
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coding system is now defined as the coder that minimizes�D. In
[6] it is shown that if the channel is assumed to be a discrete mem-
oryless channel the distortion becomes
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is the encoding region for indexin. We rewrite the
expression in braces using the fact that the channel is memoryless
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Figure 1: Predictive VQ operating over a noisy channel. A prediction error vector is formed by subtracting from the input vector a prediction
of it. The prediction error vector is then quantized by a memoryless VQ.

which is the distortion measure that defines the encoder for a given
codebook. Hence, all possible decoder states must be investigated
and the probabilities of the decoder states given the encoder state
must be known in order to calculate the distortion.

The number of operations involved in the calculation of the
distortion is growing with time and becomes unmanageable after
only a few samples. However, if the distortion measure that is
employed is the weighted squared Euclidean measure

d(x;y) = (x� y)tW(x)(x� y)

the distortion can be calculated by simply altering the encoder pre-
dictor [6]. The weighting matrixW(x) is assumed to be diagonal
with non-negative components. Introduce
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cjnpjnjin . If the encoder predic-

tor is replaced bŷxn = x̂00n the input to the VQ is no longeren but
ratherê00n = xn � ~x00n. It turns out that by replacingen by e00n and
use the standard COVQ distance measure [4] for the memoryless
VQ is equivalent to employing the distortion measure derived for
COPVQ. The distortion for this case is
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Hence, we have now found a very simple way to implement the
COPVQ distortion measure for the weighted squared Euclidean
measure by altering the encoder predictor.

4. SAMPLE ITERATIVE TRAINING METHOD

Examples of training procedures for COVQ are [4] which is a
method based on the generalized Lloyd algorithm (GLA) and [7]
which is a sample iterative (stochastic gradient) procedure. Here
we present a sample iterative method for simultaneous update of
the predictor and the codebook for COPVQ. In [6] a block itera-
tive training method for COPVQ is also presented. Due to the high
complexity of the block iterative method we confine the discussion
to the sample iterative method.

For PVQ it is customary to design the predictor first without
taking quantization into consideration and then design the code-
book for the given predictor. However, when the channel is noisy
it is very important that the predictor is redesigned to prevent er-
ror propagation. Hence, it is natural to design the predictor for the
noisy channel using the same strategy as for the codebook design.
The basic idea is to, for each incoming vector, update the param-
eters in the direction of the negative gradient of the instantaneous
distortion. In our case this implies that all code vectors and the
predictor are updated for each training vector. In the following we
derive formulas to update the codebook and the predictor for the
case when the squared Euclidean distance measure is employed.
The update of the codebook and the predictor can be performed
simultaneously but of course it is also possible to update only the
codebook for a given predictor and vice versa.

For each training sample, a search for the best vector (called
winning vector) in the current prediction error codebook is per-
formed in order to determine the instantaneous distortion. Denot-
ing the index of the winning codevector for then-th training vector
�n, the generic formula for updating the codevectorsc
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book vector numberk = 1; 2; : : : ;M ) at timen+1 can be written
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where�Q(n) is an annealing function that is decreasing with time.
The gradient of the distortion can now be calculated
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since we have assumedW(xn) to be symmetric. Hence, the equa-
tion for updating the codebook becomes
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It is clear that codevectors that are far from the winning vector
in the code space, i.e. with low transition probability, are updated
much less than those that are close.

The derivation of the predictor update is a little more com-
plicated than the codebook update. When the simplified distortion
measure presented in Section 3 was derived a term was disregarded
that contains the current predictor since it does not affect the choice
of current codevector. When differentiating the distortion with re-
spect to the predictor this term must be included. Thus, we start
with the original distortion measure rather than the simplified one.
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We note that this is the difference (i.e. error) between straightfor-
ward estimates of the correlation between the current input and
the previous outputs and the current output and previous outputs.
Finally, we write
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This expression is very difficult to calculate for other predictor or-
ders than one [6]. However, we have in our simulations seen that
by simply replacing the last term by~x00n(~x

00
n�k)

t good COPVQs
are obtained. The resulting update formula for the predictors can
now be simplified to
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In order to ensure stability throughout the training and conver-
gence of the algorithm,�P (n) should not be a scalar function but
rather a matrix function. For simplicity we have used scalar lin-
early decreasing functions for both step sizes,�Q(n) and�P (n).

5. SIMULATIONS
5.1. Gauss-Markov Source
In this section we briefly investigate performance of COPVQ for
a blocked scalar process. Such a process arise when a scalar val-
ued random sequence is partitioned into blocks ofd samples, each
block defining ad-dimensional vector. We examine a scalar Gauss-
Markov source with correlation coefficient� = 0:9. The train-
ing sequence consists of1 000 000 vectors and the evaluation se-
quence of200 000 vectors from another realization. The results
for COPVQs with rate=1 bit/sample are shown in Table 1 and can
be compared with the results of memoryless COVQ for the same
source in Table 2. All quantizers are designed for the actual chan-
nel bit error rate. The COPVQ clearly outperforms the memoryless
COVQ for all error rates.

We have also compared the results obtained here with another
memory based COVQ method. In [8], methods for noisy channel
optimized finite-state VQ (FSVQ) are proposed. The results from
these two investigations can be compared for the case when the di-
mension equals 4. The results presented here are 0.3-0.7 dB better
with the largest difference for small error probabilities.

5.2. LSF Parameters
In this section we investigate the performance of COPVQ for a
vector process. We have designed COPVQs for quantization of

Table 1: COPVQ performance for Gauss-Markov process with
� = 0:9. First order predictors.

BER dimensiond
[%] 2 3 4 5 6

0.0 11.12 11.52 11.72 11.86 12.00
0.1 10.89 11.30 11.45 11.56 11.57
1 9.44 9.79 9.99 10.08 10.21
2 8.48 8.85 9.05 9.13 9.50
5 6.93 7.25 7.53 7.71 7.82
10 5.14 5.58 5.95 5.96 5.98

Table 2: COVQ performance for Gauss-Markov process with� =
0:9. Rate=1 bit/sample.

BER dimensiond
[%] 2 3 4 5 6

0.0 7.92 9.39 10.22 10.68 11.01
0.1 7.80 9.21 9.99 10.42 10.71
1 6.85 8.05 8.66 9.04 9.39
2 6.12 7.16 7.71 8.07 8.65
5 4.71 5.59 6.00 6.66 6.96
10 3.35 3.93 4.51 4.94 5.14

line spectrum frequencies (LSF), which is one of the major appli-
cations for VQ in speech coding.

The training database consists of 86 minutes of speech and the
evaluation database has a length of 7 minutes. Three-split VQ are
used for all quantizers. A description of the databases and experi-
mental setup can be found in [1]. We have used first order predic-
tors (P=1) since the gain of using higher orders for this application
is negligible [1].

Table 3: Performance of 21 bit COPVQs. In the first case the pre-
dictor is optimized for noisefree performance and only the code-
books are trained and in the second case predictor and codebooks
are trained simultaneously.

Only CB training Sim. training
BER SD 2-4 dB > 4 dB SD 2-4 dB > 4 dB
[%] [dB] [%] [%] [dB] [%] [%]

0 1.02 2.8 0 1.02 2.0 0
0.1 1.14 7.1 0.6 1.07 4.0 0.3
0.5 1.46 16 1.9 1.27 9.4 0.7
1 1.75 28 2.8 1.42 16 0.9
2 2.10 40 5.4 1.64 24 1.4
5 2.71 55 13 2.12 42 4.3
10 3.47 58 29 2.77 60 13

The first experiment is conducted to investigate the importance
of optimizing the predictor for a certain channel. In Table 3 aver-
age spectral distortion (SD) as well as outlier measures are pre-
sented for 21 bit COPVQs. A significant performance improve-
ment is obtained by also optimizing the predictor for the noisy
channel while no difference is visible for noisefree channel.

In our second experiment we compare COPVQ performance
for LSF quantization with traditional memoryless COVQ. The re-
sults in Figure 2 indicate that a gain of 4 bits is achieved for this
application. For high error rates the performance of the 21 bit CO-
PVQ is actually comparable to a 26 bit COVQ which indicates a
gain of 5 bits. We see that by designing a PVQ scheme for chan-
nel errors, significant performance gains are achievable compared
to memoryless VQs. The gain over memoryless COVQ for the



FSVQ schemes in [8] was in the order of 2-3 bits. Hence, the
FSVQ scheme that is more complex and requires more storage ca-
pabilities is outperformed by the COPVQ scheme proposed here.
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Figure 2: Average SD for 21 bit COPVQ compared with 21 bit and
25 bit memoryless COVQs.

To compare index assignments obtained with a post process IA
algorithm and by the COPVQ design algorithm we have performed
the following experiment: The IA algorithm presented in [9] has
been applied to a PVQ that was designed for a noisefree channel.
Two cases were considered, one in which the predictor was not
scaled and one in which the predictor was scaled such that a small
degradation of 0.04 dB was allowed for noisefree channel. The
design error rates for the COPVQ designs were chosen such that
the same two conditions for noisefree performance were met while
trying to improve noisy channel performance. Note that in this
experiment, the same quantizers are used for all error probabilities
regardless of design error probability. In Figure 3, average SD for
these four different designs are compared. Clearly, much more
channel robust PVQs are obtained by the COPVQ design method
compared to post process index assignment.
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Figure 3: Average SD for 21 bit PVQs with different index as-
signments. The solid lines correspond to post process IA and the
dashed lines to IA obtained by COPVQ design. Two cases are
considered: no degradation of noisefree performance allowed (thin
lines) and a small degradation of noisefree performance is allowed
to improve noisy channel performance (thick lines).

5.3. Subjective Evaluation
We have demonstrated using objective measures that the perfor-
mance of a 21 bit COPVQ is comparable with that of a 25 bit
memoryless COVQ. In the present section we compare these two
quantizers in a simple listening experiment.

Synthetic speech was produced for each of the quantizers us-
ing the following procedure: A prediction residual was formed by

inverse filtering the speech signal using an unquantized prediction
filter. Synthetic speech was then generated by exciting the quan-
tized production filter with the prediction error signal from the un-
quantized inverse filter. The experiment was carried out for a bit
error probability of 2%.

The speech signal was obtained as a concatenation of material
spoken by four speakers, two male and two female, each reading
continuous text for one minute. The listener could choose which
of the two coded versions to listen to interactively throughout the
experiment. The task for the five listeners was then to state which
of the two versions that was preferred.

All five listeners voted the 21 bit COPVQ as the winner. They
were all confident of having made a correct choice and had a clear
preference for this coder. Furthermore, they all stated that the dif-
ference was most prominent for the male speakers.

6. SUMMARY

We have in this work presented an efficient sample iterative design
algorithm for channel optimized PVQ. Performance was investi-
gated for a blocked scalar process as well as a true vector process.
In both cases, COPVQ clearly outperformed memoryless COVQ.
It was also found that channel optimized finite-state VQ was also
outperformed by the proposed COPVQ. The validity of the results
was strengthened by an informal listening test.
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