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Abstract

Motion can be estimated by detecting the edges of a
moving object using Active Contours, and registering
them together to obtain the motion model parameters.
This idea can be applied to patient motion during the
acquisition of an MRI to eliminate motion artifacts in
the image. The data obtained during the MRI acquis-
tion, the k-space, can be divided into several subbands
such that each subband is acquired in a small frac-
tion of the full imaging time. These subbands create
invariant tissue feature maps called subband images.
Using Active Contours, the relative motion is analyzed
across the di�erent subband images to determine the
motion parameters. Using these motion parameters it
is possible to correct the subbands, thus correcting the
k-space. This has the potential to yield clear, noise-
free MR images.
Keywords: Active Contours, Motion Estimation, Mo-

tion Artifacts

1 An Overview of Active Contours
An Active Contour is an energy-minimizing spline

that detects speci�ed features within an image. It
consists of a set of control points connected by straight
lines. The Active Contour is de�ned by the number
of control points as well as the coordinates of each
control point, shown in Figure 1. It is held together
by internal forces and is guided toward image features,
such as an object's boundary, by external forces. This
can be useful for edge detection, object recognition,
and object tracking[2][3][4].

The energy function that describes Active Con-
tours is composed of two components, the internal
energy and the external energy. The internal energy
deals with intrinsic properties of the contour and is
a smoothness constraint which keeps the points con-
tained within the contour. The external energy guides
the contour toward image features. The internal en-
ergy is the summation of an elastic energy and a bend-
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Figure 1: The structure of an Active Contour.

ing energy. The elastic energy allows the Active Con-
tour to shrink or expand. To shrink (expand) the con-
tour, the elastic energy can be de�ned to increase (de-
crease) as the length increases. The elastic energy is
de�ned as:

Eelastic =

Z
s

�(~v(s)� ~v(s� 1))2ds; (1)

where s is the normalized index of the control points
on the contour, ~v(s) = (~x(s); ~y(s)) is an array of the
coordinates of all the control points on the contour,
and � is an adjustable constant that determines the
extent to which the contour is able to expand or con-
tract. The second part of the internal energy is the
bending energy. The bending energy causes the Ac-
tive Contour to be a smooth curve or a straight line.
To smooth the contour, the bending energy needs to
be de�ned such that it increases as the curvature in-
creases. Summing the squares of the curvature at each
control point de�nes a smoothing contour, i.e.,

Ebend =

Z
s

�(~v(s� 1)� ~v(s) + ~v(s+ 1))2ds; (2)

where � is an adjustable constant that determines the
extent to which the contour is allowed to bend.

The energies de�ned so far have been intrinsic en-
ergies that deal with the Active Contour itself. The



desired behavior for the Active Contour is to respond
to image features within the image. Although any
image feature can be included, only lines and edges
are considered in our case. The line energy is used to
attract the Active Contours to either bright or dark
lines within the image. Thus, for detection of bright
(dark) lines, one can de�ne an energy that increases
with decreasing (increasing) grayscale values. The im-
age Energy is de�ned in terms of the image intensity
as follows [2]:

Eimage =

Z
s

wlineElineds =

Z
s

�wlineI(~v(s))ds; (3)

where I(�) is the image intensity and wline is a con-
stant determining the strength of attraction. The edge
energy allows the contour to evolve toward the edges.
Since an edge is de�ned where a large grayscale gradi-
ent exists, the energy should decrease as the gradient
increases.

Eimage =

Z
s

wedgeEedgeds =

Z
s

�wedgejrI(~v(s))j2ds

(4)
where rI(�) is the image gradient and wedge is a con-
stant to adjust the strength of attraction. Other types
of external energy can also be de�ned [2][3][4].

The total energy of the Active Contour is the sum
of the internal energies and the external energies. The
Active Contour minimizes this total energy in order
to converge as desired. Through the calculus of varia-
tions it is possible to obtain an optimal ~v(s) such that
the following equation is minimized:

E =

Z
s

�(~v(s)� ~v(s� 1))2

+ �(~v(s� 1)� 2~v(s) + ~v(s+ 1))2

+ wlineI(~v(s)) + wedgejrI(~v(s))j2ds: (5)

This can be rewritten in the following form:

E =

Z
s

1

2
(�j~v0j2 + �j~v00j2) +Eext(~v)ds

=

Z
s

F (s; ~v; ~v0; ~v00)ds; (6)

where ~v0 and ~v00 denote the �rst and second deriva-
tives of ~v, and Eext(�) is the external energy function.
From the calculus of variations, the solution to this op-
timization problem must satisfy the following Euler's
di�erential equation[2]:

Fv �
d

ds
Fv0 +

ds

ds2
Fv00 = 0: (7)

Substituting (6) into (7), the following Euler equation
is obtained:

��0~v0 � (�+ �00)~v00 + 2�0~v000 + �~v0000 +
@Eext

@~v
= 0: (8)

The discrete form of this equation produces two in-
dependent linear equations for x(s) and y(s) in the

form A ~x = ~fx and A~y = ~fy, where A is a circulant
pentadiagonal matrix consisting of several combina-
tions of � and � [2][3][4].

A number of approaches have been used to imple-
ment Active Contours, e.g., dynamic programming [4],
the Greedy algorithm [3], and the Kass method [2].

In this paper, we extend the Kass method in or-
der to develop a technique to suppress motion induced
noises in MRI. The equation for the Kass method is
as follows:

A~xt + fx(~xt�1; ~yt�1) = �(~xt � ~xt�1)

A~yt + fy(~xt�1; ~yt�1) = �(~yt � ~yt�1); (9)

where A~xt is the internal forces, fx(~xt�1; ~yt�1) rep-
resents the external forces, and the right side of the
equation is a constant  multiplied by the step size.
Solving for the position update, (9) becomes:

(A+ I)~xt = ~xt�1 � ~fx(~xt�1; ~yt�1)

(A+ I)~yt = ~yt�1 � ~fy(~xt�1; ~yt�1): (10)

Because taking the inverse of the matrix (A+ I) can
cause problems, the LU decomposition is taken in-
stead. This allows forward and backward substitution
to solve for the new position of the Active Contour.

Figure 2 illustrates the e�ects of the elastic and
bending energies when applied independently. If an
elastic energy is applied to an initial contour (Figure
2 (left)), it will pull the Active Contour into a smooth
circle which keeps contracting. The outlying points
get pulled in the fastest while the innermost points
are pulled outward until they are aligned with their
neighbors. This is shown in Figure 2 (middle). If a
bending energy is applied, it pulls the Active Contour
into a smooth circle where the outer points get pulled
in while the inner points get pushed out. A simulation
of this is shown in Figure 2(right).

The Kass method [2] is applied to three simple ob-
jects to show the relative e�ects of the internal forces
and external forces. The results are shown in Fig-
ure 3. The Active Contour conforms easily to objects
with smooth contours while corners are more di�cult
to detect. This is because these results where obtained
using constant �. If � were variable the contour would
be more apt to detect corners.



Figure 2: An example of Elastic and Bending Energy:
(left) initial contour, (middle) 20 iterations of elastic,
(right)20 iterations of bending

Figure 3: An example of Active Contours after 150
iterations of the Kass, et al. method

2 Motion Estimation using Active

Contours
To estimate motion of an object, the contours of

the object can be detected at each time interval using
the methods described. The relative motion of the
Active Contours throughout the full-time duration is
estimated using elastic registration assuming an a�ne
transformation model [5].

An advantage of using Active Contours for motion
estimation is that they can reduce computation time
of motion estimation because the number of points to
track is reduced to the number of control points on
the contour. One problem with Active Contours is its
tremendous dependence on the values of � and � for
the desired convergence. Also, points can move along
the contour as well as perpendicular to it which tends
to guide points toward stronger features allowing them
to bunch up [3][4].

An application of motion estimation using Active
Contours, which will be discussed in the following sec-
tion, is the reduction of motion artifacts in MRI data.
Motion Artifacts in MRI is the result of patient mo-
tion during the data acquisition time. To simulate the
e�ect of motion artifacts, the motion must �rst be as-
sumed. Once the motion is determined, the position

of the object can be found at any moment. Because
the data in MRI is not acquired simultaneously, the
data is obtained at di�erent time intervals. Thus, for
each time interval, ti, the new position of the object
is found. We transform the data with the object in
its new position by taking the FFT. The new data
acquired by the FFT replaces the artifact free data
corresponding to that particular time interval. After
repeating this procedure for each time interval, the in-
verse FFT of all the data creates an image with motion
artifacts. An example of simulated motion artifact is
shown in Figure 4.

Figure 4: An example of Simulated Motion Artifacts:
(left) Images without Motion artifacts (middle) Im-
ages containing translation motion (right) Images con-
taining rotational motion

3 Applications to Motion-Artifact Re-

duction in MRI
Since motion can be estimated using Active Con-

tours, it is possible to estimate the motion of a pa-
tient during MRI acquisition using this method. Pa-
tient motion causes blurring and ringing in MR images
which alters the accuracy of the MRI. Estimating the
motion of the patient and correcting for it would elim-
inate the possibility of repeating the long MRI proce-
dure to obtain clear artifact-free images.

To track the patient's motion, we must consider the
data obtained throughout the acquisition time, the k-
space. The k-space is the data in the frequency domain
that the MRI machine acquires. The inverse Fourier
Transform of this data is the actual image of the ob-
ject. Because the MRI k-space is not acquired simulta-
neously, it can be divided into N subbands where each
subband is obtained within a fraction of the time the
total data is acquired. Within each subband of time
the motion is assumed to be negligible. If the bound-
aries are found in each subband image, it is possible
to track the motion throughout the subband images.



Active Contours are used to detect features, such as
boundaries, in each subband image. Thus, the con-
tours can be registered together to obtain the motion
model parameters of the object[7]. A block diagram of
this motion estimation procedure is shown in Figure
5.
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Figure 5: Block Diagram of the proposed method of
motion estimation using Active Contours.

Basically, after detecting the edges of the subbands,
the registration determines the motion between each
subband. Once the motion is determined the subband
is repositioned to correct for the motion. For example,
if we would like to determine the motion between the
�rst subband image and the second, we would detect
the edges using Active Contours. Registration of these
contours would tell us the motion between the �rst
and second subband images. Suppose the motion is a
rotation of 5 degrees, then the second image would be
rotated by -5 degrees to align the second image with
the �rst. An example of image correction is shown in
Figure 6.

Figure 6: Image correction from translational motion
artifact. (left) Original image without motion (mid-
dle) Image containing Translational Rigid Body Mo-
tion (right) Corrected image

Our current work aims at implementing the ap-

proach described above to real MRI data and at
comparing it with other approaches in the literature,
such as navigator-echos, projection onto complex sets,
auto-focus algorithms, and the approaches described
in [1].

4 Summary and Conclusions
The theory and implementation for the proposed

method for motion artifact reduction in magnetic res-
onance imaging were developed. This method divides
the k-space into subbands that are individually col-
lected in much shorter time intervals than the whole
image. Using Active Contours, the motion is tracked
throughout the subband images, which allows patient
motion to be estimated during the data acquisition
period. The estimated motion allows reconstruction
of an artifact-free image. The results of applying this
method demonstrate the potential to free MRI from
one of the fundamental problems due to motion sen-
sitivity.
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