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Abstract Bayesian Interpretation. The functiond(z) has a statistical in-
terpretation as a (negative logarithm of) a Bayesian prior [17, 18,
O . > 21, 22] or (deterministically) as a penalty function enforcing spar-
determination of an environmentally adapted overcomplete dictio- sity whered(z) should serve as a “relaxed counting function” on
nary (the columns ofi) depend upon the choice of a “regulariz- e honzero elements af [4, 13, 7]. Our approach emphasizes
ing function” d(x) in several recently proposed procedures. We e tac thatd(z) can serveboth of these roles simultaneously. It
discuss the interpretation @f(x) within a Bayesian framework, 5y 4150 be useful to have a large parameterized class of func-
and the desirable properties that “good” (i.e., sparsity ensuring) tions, d(z) = dx(z), to allow for the possibility of selecting a

regularizing functionsd(z) might have. These properties are: wpegp 7(1) in specific applications. A Bayesian interpretation is
Schur-concavity(d(z) is consistent with majorization);oncav- obtained from the generative signal model,

ity (d(x) has sparse minimaparameterizability(d(z) is drawn

Sparse solutions to the linear inverse probldm = y and the

from a large, parameterizable class); &actorizability of the gra- y=Az+v, (4)
dient of d(x) in a certain manner. The last property (which nat-

urally leads one to consideeparableregularizing functions) al- wherez has the parameterized pdf,

lows d(z) to be efficiently minimized subject tdz = y using an

Affine Scaling Transformation (AST)-like algorithm “adapted” to — grlymda@® —dx(@) 4

the choice ofi(z). A Bayesian framewor&llows the algorithm to (@) € o ¢ “

be interpreted as amdependent Component Analy§i€A) pro- ] o
cedure. andv is assumed to be normally distributes, ~ N(0, % - I).

TreatingA deterministically (this can be relaxed), but perhaps un-
known, and assuming thatandr are independent (and that the
1. INTRODUCTION parametera and A have no functional dependencies), Bayes'’ rule

ields,
Sparsity and Adaptation. For A = [a1,---,a,] € R™*™ = y

“overcomplete dictionary”#{ > m, rank(4) = m), asparse so- 1 1

lution, , to the inverse problemlz = y is a solution having a p(sly; A, A) = Bp(y|5§ A A)p(s; A A) = Ep,,(y—As)pA(s),
maximal number of zero elements. Recently, various researchers

have noted that sparse solutions can be found found as solutions t§vhere
a “regularized” inverse problem,

B = ply: A A) = / p(yles A) - ples N

ii:argmxin{||14$—y||2+7d($)} ; 1)
When the “prior’p, (s) and the dictionaryl are bottpre-specified
for an appropriately chosen regularization functit{w) [21, 22, maximizing this expression (equivalently, minimizing its negative
17,18, 33, 11]. Inthe “low noise limit” (see the discussion below), |ogarithm) leads to the optimization problem (1) discussed above.
v — 0, this becomes This results in anaximum a posterioréstimatez of the gener-
. ) ating signal vector: given the observed signgl We have stud-
R vt d(x) . ) ied this case in the low noise limit [23, 8], and more recently we

have begun to consider algorithms appropriate when noise is non-
Furthermore, téearna dictionary adapted to the environment, negligible [26].

it has been suggested that one choose [33, 11], For unknown) and/or A4, it is required to learn values of

R ) and A “best adapted” to the statistics of the environment generat-
A =arg min <{||Aa: —yl|” + ’yd(:z:)}> , 3) ing the observed signgl In essence, we want to find a generative
Azr,ez, model of the form (4) that best explains the observations. Note that
- . . the source vectog is unknown (“blind source problem”) which
where(-) indicates an averaging over environmental samples makes the task of estimatingand A somewhat problematic. As-
{y1,y2,---} generated by the “source vectorgt, z2,---}. Itis suming that we can collect a sufficiently representative (and large)
evident that choice af(z) affects the nature of the learned dictio-  sample set of independent observati®i$ = {y1,---yn} gen-
nary A and, givenA, any particular sparse solutidn erated by the respective sequence of independent source vectors



XN = {z,,---, zn, then we can obtaimaximum likelihoogs-
timates of\, A, andX”™ givenY ™ by solving the problem

N
min —logp(XV|YY;A\,A) = min — log p(z¢|ye; A, A) .
Jmin gp(X™ | ) Jming ; gp(zelye )

This can be written in terms of the sample average as

min_(—log p(z|y; A, 4)) ,
\,A,zN

which with the generative model (4) and fixadgives the opti-

Inwords, ify isless diverse tham (according to the Lorentz order)
thend(y) is less thani(x) for d(-) Schur-concave. Henceforth we
take Schur-Concavity to bergecessary conditiofor d(-) to be a
goodmeasure of diversitganti-sparsity.

Concavity yields sparse solutionsRecall that a functiorl(-) is
concaveon the positive orthank’} iff [28],

d((1 =)z +yy) > (1 —v)d(z) + ~d(y),

Ve,y € R} ,Vv,0 < v < 1. A scalar function is said to be
permutation invarianor symmetridf its value is independent of

mization problem (3) mentioned above. This approach is analyzedrearrangements of its components. An important fact is that for

for the case of thé, norm priorin [17, 18, 11, 16].

This procedure can also be given interesting information the-
oretic interpretations and conditions can be given that ensure opti-
mality of the resulting learned probability distributions in terms of
the Kullback-Liebler distance to the true underlying probabilities | nown that sub
[15, 2, 19, 20, 27]. Ideally, optimizing over the parameterization i,y es its mini

A will provide a good parametric fit gb, (z) to the true under-

lying environmental prior probability density function describing o 4sufficient conditiorfor d()

permutation invariant functionsoncavity is a sufficient condition
for Schur-Concavity16]:

Concavity + Symmetry= Schur-Concavity.

Now recall the low-noise sparse inverse problem (2). Itis well
ject to linear constraints, a concave functioRn
ma on théoundaryof R} [28], and as a conse-
gquence these minima are therefeparse We take concavity to
to be a measure of diversity and

the source vectors. Thus we see the potential desirability of hav-\,a gptain sparsity as constrained minimai6).

ing a relatively large family of distributiong, (). The problem
of selecting ‘an ‘optimal” choice of\ is known as the problem

More generally, a diversity measure should be somewhere be-

of hyperparameter selection in the Bayesian estimation literaturetween Schur-concave and concave. In [8] are defalebst con-

[32, 33].

As previously mentioned, the functiods(z) should also have

cavefunctions, which are Schur-concave and (locally) concave in
all n directions but one, which also are good measures of diversity.

analytical properties consistent with the goal of enforcing sparse Separability, Schur-Concavity, and ICA. The simplest way to

solutions.
desirable aspect of(z), i.e. on the requirement thal(z) be

In our recent work we have focused on the second €nsure thati(x) be permutation invariant (a necessary condition

for Schur-concavity) is to use functions that asparable Sepa-

sparsity-enforcing, and on the development of algorithms to solve rable functions obey the property that

the low-noise problem (2) given a specified overcomplete dictio-

nary A [23, 8]. We discuss this aspect in more detail next.

2. MAJORIZATION AND SCHUR-CONCAVITY

Schur-concave functions.A measure of the sparsity of the ele-
ments of a solution vectae, or the lack thereof (which we refer
to as thediversity of z) is given by a partial ordering on vectors
known as the_orentz order For any vector in the positive orthant,
x € R%, define thedecreasing rearrangement

and thepartial sumg28,16],

k
Sa:[k]:za:hja kZl:"'an'
i=1

We say thay majorizese, y > =z, ifffor k=1,--- n,

Sylk] > Sa[k];  Syln] = Sa[n].
The vectory is more concentrated, or ledsverse thanz. This
partial order defined by majorization defines the Lorentz order.

We are interested in scalar-valued functionsrofvhich are
consistent with majorization. These are knowrSakur-Concave
functions,d(-) : R} — R. They are defined to be precisely the
class of functions which amonsistent with the Lorentz order

y=z = d(y) <d(z).

d@) =3 o(alil),

wherez[4] is thei'” component of: € R™. Note that separability
of d(x) corresponds téactorizability of py (),

pa(@) = pa(z[l]) - - pa(z[n]) .

Thusseparabilityof d(x) corresponds to the assumptioniode-
pendent components . We see that from a Bayesian perspec-
tive, separability ofi(z) corresponds to a generative model for
thatassumes a source, with independent component/ith this
assumption, we are working within the framework of Independent
Component Analysis (ICA) [15, 2, 19, 20, 27].

It is now evident that relaxing the restriction of separability
generalizes the generative model to the case were the source vec-
tor, z, hasdependent componentg/e can reasonably call an ap-
proach based on a non-separable diversity meaKurea Depen-
dent Component Analysi®CA). Unfortunately, this relaxation
appears to significantly complicate the analysis and development
of optimization algorithms.

3. ADMISSIBLE DIVERSITY MEASURES

Separable MeasuresThe diversities measures considered in [23,

8] are separable, with only a brief mention of the extension to non-
separable measures given in [8]. In addition to separable mea-
sures based on the Shannon entropy function, we have considered
in some detail the following functions.



P-Class.We defined, (z) = sgn(p) >, |z[i]|”, p < 1.The
separable@-class generalizes thig-norm measures tp < 1, in-
cluding p negative. Everyp-class function (excluding = 0) is

recursive algorithm that will provably converge to a local mini-
mum (and therefore sparse solution) of the problem () ositive
definitescaling matrixI1(z) defines anatural (d(z)-dependent)

concave and permutation invariant, and hence Schur-concave.Thé/ffine Scaling Transformation (AST) matri¥ (z) by

¢;:-norm casep = 1, corresponds to the choice of a exponential

density function as a Bayesian prior; a simple choice that is often

used in the ICA literature [17, 18]. Note that= 2 is not con-
cave and is not g-class function. The cage= 2 corresponds to
assuming a gaussian (maximum entropy) prior on solutioard
results innonsparsesolutions to (2).

S-functions. This large parameterized class of separable permu-

tation invariant diversity measures is a superset opttass dis-
cussed earlier and is defined by [8],

n q

ds(@) = D S(alill) =) wi dy (@),
i=1 j=1

dp; (@) = sor(p;) Y [2li]"7, p; <1, (5)

i=1
S(s) = sgr(pi)wi ™ + -+ Sg(pg) wy 577,
s>0,p;, < 1, p;j#0, and w; >0,
or p = 0,1, and w; €R.

Note that theS-functions have fractional and possibly negative
powers,p; < 1 and are strictly concave. TRefunctionsprovide

a rich class of regularizing functionfer the functional (1) which
can be used to affect the nature of the basis vectors of a dictionar
constructed from optimizing (2) with respectfoover an ensem-
ble of environmental samples. A natural question to ask is if this

parameterized class can prove useful for obtaining good (factoriz-

able) probability density function estimates for the prior density of
the source vector.

NonseparableS-functions. As proved in [14], every permutation

W(z) 21 2 (z).

7

The relevant result concerning the behavior of the algorithm
is given by the following theorem which can be proved using the
general convergence theorem of Zangwill [31].

Theorem 1 ([8]) Letd(x) be a sign and permutation invariant
function that is strictly concave on the positive orthant and for
which II(z) > 0 for all z € R™. Assume that the s¢t| d(z) <
d(zo)} is compact for allzo. Letx, be generated by the algorithm

Wit W(zr), Art1=AWiq1, (8)
a1 = AfLy. Ter = Wigades 9
with Ak++1 the Moore-Penrose pseudoinverseAfstarting with

xo feasible,Azo = y. Then for all|zy+1| # |z«| (the function
|- | is defined component-wise), we hayeis feasibled(zx+1) <
d(zr), and the algorithm converges to a local minimuilfx ™),
x, — z*, wherez™ is a boundary point of some orthant and
Az* =y.

As discussed in [23, 8], and mentioned above, convergence to a
boundary point ensures that a sparse solution to the inverse prob-
em Az = y, although in general the solution will be a local, but
not a global, solution to the problem (2).

Separable Diversity MeasuresFor theseparableS-function di-
versity measures the scaling matfixhas a simpleiagonalform
(and therefore easily invertible) and is positive definite. &ofx)
anS-function we have

. 1
invariant concave function is Schur-concave. To generalize the II(z) = Z Ipj| wj p;(x); Ip;(z) = diag <W> .

separabl&-functions defined above to include nonseparable func-
tions requires that we include symmetric “cross terms” of sums of
products of powers of the componentsaofind give conditions

to ensure concavity of the resulting permutation symmetric func-
tions. Alternatively, we can define a non-symmetric concave func-
tion of the components of and proceed to symmetrize it using

the methodologies discussed in [14]. In any event, we find that

the problem of producing symmetric, concave diversity measures "~ ) .
glutions to the ICA problem for factorizable priors drawn from the

having a simple structure for the gradient factorization discusse
below is significantly more complicated.

4. AFFINE SCALING AND GRADIENT FACTORIZATION

An AST-Like Algorithm. In [23, 8], we have shown that diversity
measureg(z) can be efficiently minimized subject thr = y us-
ing an Affine Scaling Transformation (AST)-like algorithm which
is “adapted” to the choice af(z). Towards this end, thgradient
of an admissible diversity measutér) is factoredas
Vd(z) = a(z)I(x)z, (6)
wherea(x) is a positive scalar function, and (z) is thescaling
matrix. The quantitiesx(z) and II(x) are invariant with respect
to permutations of the elements of The scaling matrix7 ()

J
This yields a rich class dfeparablediversity measures which sat-
isfy the conditions of Theorem 1 and which can be used to solve
the low-noise problem (2). Utilization of the algorithm for func-
tions drawn from theS-class (which contains the-class) will re-
sult in sparse solutions tdxz = y for specifiedds(z) and dic-
tionary A. Thus we have an algorithm that can provide sparse so-

S-class of diversity measures (and given a dictiondyy Conver-
gence of the algorithm for other separable diversity measures, such
as the Shannon and Gaussian measures, is discussed in [23, 8].

5. DISCUSSION AND CONCLUSIONS

The algorithm of Theorem 1 was originally derived for constrained
minimization of the (separable) Gaussian entropy in [5, 6]. Prop-
erly interpreted within the majorization/concavity framework, ref-
erence [6] provides a rigorous justification for the use ofttutass

of diversity measures, for p > 0. In [23] it was shown that the
algorithm derived for the Gaussian measdig€x) and that for the
limiting p-class measuréim,_,o d,(z) are identical and the re-
lationship between these two separable measures was examined.
Convergence was also shown for the Shannon entropy measures.

and its properties turns out to be key in constructing a convergent,A general analysis of the case of positive definite scaling matrix



II(x) (which includes the separable genefatlass of measures)

(11]

and other cases (including Renyi entropy-based measures) can be

found in [8]. An interesting application to MEG signal processing

is given in [5, 6]. Other references are [1, 24, 25, 26, 9, 10].

Obviously, much work remains to be done. We are currently
investigating the use of multiple measurements for enhanced noise
robustness, extending the algorithm to the “noisy” case (1), and
considering extensions of the algorithm to efficiently solve the en-

(12]

(13]

vironmentally adapted basis learning problem (3). We are also [14]
continuing to examine the problem of adapting the parameters (known
as hyperparameters in the Bayesian estimation and learning Iiter-[15]

ature [32]) of theS-class of diversity functions to provide a good
density estimatepy (z) of the unknown density af. In addition

we are looking into rate-of-convergence and scaling issues associ-[16]

ated with our algorithm.

The majorization framework, focusing on sparse solution re-

quirements, complements the Bayesian/ICA framework, which is [17]

concerned with statistically sound solutions to the signal represen-

M. Lewicki and T.J Sejnowski, “Learning Overcomplete Represen-
tations”, February 1998. Submitted Neural Computation

M. Malfait and D. Roose, “Wavelet-Based Image Denoising Using
a Markov Random Field a Priori ModelEEE Trans. Image Proc.,
6(4):549-65, 1997.

O.L. Mangasarianilachine Learning via Polyhedral Concave Min-
imization November 1995, Mathematical Programming Technical
Report 95-20, Computer Sciences Department, University of Wis-
consin.

A.W. Marshall and I. Olkin,Inequalities: Theory of Majorization
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J.-P. Nadal and N. Parga, “Nonlinear Neurons in the Low Noise
Limit: a Factorial Code Maximizes Information Transfeigétwork,
5(4):565-81, November 1994.

K. Okajima, “The Gabor Function Extracts the Maximum Infor-
mation from Input Local SignalsNeural Networks11(3):435-39,
April 1998.

B.A. Olshausen and D. Field, “Learning Efficient Linear Codes for
Natural Images: The Roles of Spareness, Overcompleteness, and
Statistical Independence’SPIE Proc.: Human Vision and Elec-

tation problem. We have seen that the separable, Schur-concave/concavgnic Imaging 2657:132-8, 1996.
diversity measures are particularly interesting in that they lead to 18]

straightforward algorithm development (at least in the low-noise
case) and correspond to the use of a factorizable prior appropri-

ate for obtaining ICA solutions [15, 27]. In particular, tSeclass

(19]

of diversity measures provides a large, parameterized class of sep-
arable diversity measures. In principle, a measure can be drawn[zo]

from this class in an “optimal” manner to better model &hgriori

statistical properties of the environment, allowing for a parametric

density estimation of the environmental Bayes prior subject to the 57

constraint that the negative logarithm of the prior is concave.
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