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Abstract
Sparse solutions to the linear inverse problemAx = y and the
determination of an environmentally adapted overcomplete dictio-
nary (the columns ofA) depend upon the choice of a “regulariz-
ing function” d(x) in several recently proposed procedures. We
discuss the interpretation ofd(x) within a Bayesian framework,
and the desirable properties that “good” (i.e., sparsity ensuring)
regularizing functions,d(x) might have. These properties are:
Schur-concavity(d(x) is consistent with majorization);concav-
ity (d(x) has sparse minima);parameterizability(d(x) is drawn
from a large, parameterizable class); andfactorizabilityof the gra-
dient of d(x) in a certain manner. The last property (which nat-
urally leads one to considerseparableregularizing functions) al-
lowsd(x) to be efficiently minimized subject toAx = y using an
Affine Scaling Transformation (AST)-like algorithm “adapted” to
the choice ofd(x). A Bayesian frameworkallows the algorithm to
be interpreted as anIndependent Component Analysis(ICA) pro-
cedure.

1. INTRODUCTION

Sparsity and Adaptation. For A = [a1; � � � ; an] 2 Rn�m =
“overcomplete dictionary” (n > m, rank(A) = m), a sparse so-
lution, x̂, to the inverse problemAx = y is a solution having a
maximal number of zero elements. Recently, various researchers
have noted that sparse solutions can be found found as solutions to
a “regularized” inverse problem,

x̂ = argmin
x

�
kAx� yk2 +  d(x)

	
; (1)

for an appropriately chosen regularization functiond(x) [21, 22,
17, 18, 33, 11]. In the “low noise limit” (see the discussion below),
 ! 0, this becomes

x̂ = min
Ax=y

d(x) : (2)

Furthermore, tolearna dictionary adapted to the environment,
it has been suggested that one choose [33, 11],

Â = arg min
A;x1;x2;���


�
kAx� yk2 +  d(x)

	�
; (3)

whereh�i indicates an averaging over environmental samplesy 2
fy1; y2; � � �g generated by the “source vectors”fx1; x2; � � �g. It is
evident that choice ofd(x) affects the nature of the learned dictio-
naryA and, givenA, any particular sparse solution̂x.

Bayesian Interpretation. The functiond(x) has a statistical in-
terpretation as a (negative logarithm of) a Bayesian prior [17, 18,
21, 22] or (deterministically) as a penalty function enforcing spar-
sity whered(x) should serve as a “relaxed counting function” on
the nonzero elements ofx [4, 13, 7]. Our approach emphasizes
the fact thatd(x) can servebothof these roles simultaneously. It
may also be useful to have a large parameterized class of func-
tions, d(x) = d�(x), to allow for the possibility of selecting a
“best” d(x) in specific applications. A Bayesian interpretation is
obtained from the generative signal model,

y = Ax+ � ; (4)

wherex has the parameterized pdf,

p�(x) = Z
�1
� e

�d�(x) ; Z� =

Z
e
�d�(x)dx ;

and� is assumed to be normally distributed,p� � N(0; 
2
� I).

TreatingA deterministically (this can be relaxed), but perhaps un-
known, and assuming thatx and� are independent (and that the
parameters� andA have no functional dependencies), Bayes’ rule
yields,

p(sjy;�;A) =
1

�
p(yjs;�;A)�p(s;�;A) =

1

�
p�(y�As)�p�(s) ;

where

� = p(y;�;A) =

Z
p(yjx;A) � p(x;�)dx :

When the “prior”p�(s) and the dictionaryA are bothpre-specified,
maximizing this expression (equivalently, minimizing its negative
logarithm) leads to the optimization problem (1) discussed above.
This results in amaximum a posterioriestimate,̂x of the gener-
ating signal vectorx given the observed signaly. We have stud-
ied this case in the low noise limit [23, 8], and more recently we
have begun to consider algorithms appropriate when noise is non-
negligible [26].

For unknown� and/orA, it is required to learn values of�
andA “best adapted” to the statistics of the environment generat-
ing the observed signaly. In essence, we want to find a generative
model of the form (4) that best explains the observations. Note that
the source vectorx is unknown (“blind source problem”) which
makes the task of estimating� andA somewhat problematic. As-
suming that we can collect a sufficiently representative (and large)
sample set of independent observationsY N = fy1; � � � yNg gen-
erated by the respective sequence of independent source vectors



XN = fx1; � � � ; xN , then we can obtainmaximum likelihoodes-
timates of�, A, andXN givenY n by solving the problem

min
�;A;XN

� log p(XN jY N ;�;A) = min
�;A;xN

�

NX
`=1

log p(x`jy`;�;A) :

This can be written in terms of the sample average as

min
�;A;xN

h� log p(xjy;�;A)i ;

which with the generative model (4) and fixed� gives the opti-
mization problem (3) mentioned above. This approach is analyzed
for the case of thè1 norm prior in [17, 18, 11, 16].

This procedure can also be given interesting information the-
oretic interpretations and conditions can be given that ensure opti-
mality of the resulting learned probability distributions in terms of
the Kullback-Liebler distance to the true underlying probabilities
[15, 2, 19, 20, 27]. Ideally, optimizing over the parameterization
� will provide a good parametric fit ofp�(x) to the true under-
lying environmental prior probability density function describing
the source vectors. Thus we see the potential desirability of hav-
ing a relatively large family of distributionsp�(x). The problem
of selecting ‘an ‘optimal” choice of� is known as the problem
of hyperparameter selection in the Bayesian estimation literature
[32, 33].

As previously mentioned, the functionsd�(x) should also have
analytical properties consistent with the goal of enforcing sparse
solutions. In our recent work we have focused on the second
desirable aspect ofd(x), i.e. on the requirement thatd(x) be
sparsity-enforcing, and on the development of algorithms to solve
the low-noise problem (2) given a specified overcomplete dictio-
naryA [23, 8]. We discuss this aspect in more detail next.

2. MAJORIZATION AND SCHUR-CONCAVITY

Schur-concave functions.A measure of the sparsity of the ele-
ments of a solution vectorx, or the lack thereof (which we refer
to as thediversityof x) is given by a partial ordering on vectors
known as theLorentz order. For any vector in the positive orthant,
x 2 Rn

+, define thedecreasing rearrangement

x
:
= (xb1c; � � � ; xbnc) ; xb1c � � � � � xbnc � 0

and thepartial sums[28,16],

Sx[k] =

kX
i=1

xbic ; k = 1; � � � ; n :

We say thaty majorizesx, y � x, iff for k = 1; � � � ; n,

Sy[k] � Sx[k] ; Sy[n] = Sx[n] :

The vectory is more concentrated, or lessdiverse, thanx. This
partial order defined by majorization defines the Lorentz order.

We are interested in scalar-valued functions ofx which are
consistent with majorization. These are known asSchur-Concave
functions,d(�) : Rn

+ ! R. They are defined to be precisely the
class of functions which areconsistent with the Lorentz order,

y � x ) d(y) < d(x) :

In words, ify is less diverse thanx (according to the Lorentz order)
thend(y) is less thand(x) for d(�) Schur-concave. Henceforth we
take Schur-Concavity to be anecessary conditionfor d(�) to be a
goodmeasure of diversity(anti-sparsity).

Concavity yields sparse solutions.Recall that a functiond(�) is
concaveon the positive orthantRn

+ iff [28],

d ((1� )x+ y) � (1� )d(x) + d(y) ;

8x; y 2 Rn
+ ; 8; 0 �  � 1. A scalar function is said to be

permutation invariantor symmetricif its value is independent of
rearrangements of its components. An important fact is that for
permutation invariant functionsconcavity is a sufficient condition
for Schur-Concavity[16]:

Concavity + Symmetry) Schur-Concavity.

Now recall the low-noise sparse inverse problem (2). It is well
known that subject to linear constraints, a concave function onRn

+

takes its minima on theboundaryof Rn
+ [28], and as a conse-

quence these minima are thereforesparse. We take concavity to
be asufficient conditionfor d(�) to be a measure of diversity and
we obtain sparsity as constrained minima ofd(�).

More generally, a diversity measure should be somewhere be-
tween Schur-concave and concave. In [8] are definedalmost con-
cavefunctions, which are Schur-concave and (locally) concave in
all n directions but one, which also are good measures of diversity.

Separability, Schur-Concavity, and ICA. The simplest way to
ensure thatd(x) be permutation invariant (a necessary condition
for Schur-concavity) is to use functions that areseparable. Sepa-
rable functions obey the property that

d(x) =

nX
i=1

�(x[i]) ;

wherex[i] is theith component ofx 2 R
n. Note that separability

of d(x) corresponds tofactorizabilityof p�(x),

p�(x) = p�(x[1]) � � � p�(x[n]) :

Thusseparabilityof d(x) corresponds to the assumption ofinde-
pendent componentsof x. We see that from a Bayesian perspec-
tive, separability ofd(x) corresponds to a generative model fory
thatassumes a source,x, with independent components.With this
assumption, we are working within the framework of Independent
Component Analysis (ICA) [15, 2, 19, 20, 27].

It is now evident that relaxing the restriction of separability
generalizes the generative model to the case were the source vec-
tor, x, hasdependent components. We can reasonably call an ap-
proach based on a non-separable diversity measured(x) aDepen-
dent Component Analysis(DCA). Unfortunately, this relaxation
appears to significantly complicate the analysis and development
of optimization algorithms.

3. ADMISSIBLE DIVERSITY MEASURES

Separable Measures.The diversities measures considered in [23,
8] are separable, with only a brief mention of the extension to non-
separable measures given in [8]. In addition to separable mea-
sures based on the Shannon entropy function, we have considered
in some detail the following functions.



P -Class.We definedp(x) = sgn(p)
Pn

i=1
jx[i]jp ; p � 1. The

separablep-class generalizes thè1-norm measures top � 1, in-
cluding p negative. Everyp-class function (excludingp � 0) is
concave and permutation invariant, and hence Schur-concave.The
`1-norm case,p = 1, corresponds to the choice of a exponential
density function as a Bayesian prior; a simple choice that is often
used in the ICA literature [17, 18]. Note thatp = 2 is not con-
cave and is not ap-class function. The casep = 2 corresponds to
assuming a gaussian (maximum entropy) prior on solutionsx and
results innonsparsesolutions to (2).

S-functions. This large parameterized class of separable permu-
tation invariant diversity measures is a superset of thep-class dis-
cussed earlier and is defined by [8],

dS(x) =

nX
i=1

S(jx[i]j) =

qX
j=1

!j dpj (x) ;

dpj (x) = sgn(pj)
nX
i=1

jx[i]jpj ; pj � 1 ; (5)

S(s) = sgn(p1)!1 s
p1 + � � �+ sgn(pq)!q s

pq ;

s > 0 ; pj < 1 ; pj 6= 0 ; and !j � 0 ;

or pj = 0; 1 ; and !j 2 R :

Note that theS-functions have fractional and possibly negative
powers,pj � 1 and are strictly concave. TheS-functionsprovide
a rich class of regularizing functionsfor the functional (1) which
can be used to affect the nature of the basis vectors of a dictionary
constructed from optimizing (2) with respect toA over an ensem-
ble of environmental samples. A natural question to ask is if this
parameterized class can prove useful for obtaining good (factoriz-
able) probability density function estimates for the prior density of
the source vectorx.

NonseparableS-functions. As proved in [14], every permutation
invariant concave function is Schur-concave. To generalize the
separableS-functions defined above to include nonseparable func-
tions requires that we include symmetric “cross terms” of sums of
products of powers of the components ofx and give conditions
to ensure concavity of the resulting permutation symmetric func-
tions. Alternatively, we can define a non-symmetric concave func-
tion of the components ofx and proceed to symmetrize it using
the methodologies discussed in [14]. In any event, we find that
the problem of producing symmetric, concave diversity measures
having a simple structure for the gradient factorization discussed
below is significantly more complicated.

4. AFFINE SCALING AND GRADIENT FACTORIZATION

An AST-Like Algorithm. In [23, 8], we have shown that diversity
measuresd(x) can be efficiently minimized subject toAx = y us-
ing an Affine Scaling Transformation (AST)-like algorithm which
is “adapted” to the choice ofd(x). Towards this end, thegradient
of an admissible diversity measured(x) is factoredas

rd(x) = �(x)�(x)x ; (6)

where�(x) is a positive scalar function, and�(x) is thescaling
matrix. The quantities�(x) and�(x) are invariant with respect
to permutations of the elements ofx. The scaling matrix�(x)
and its properties turns out to be key in constructing a convergent,

recursive algorithm that will provably converge to a local mini-
mum (and therefore sparse solution) of the problem (2). Apositive
definitescaling matrix�(x) defines anatural (d(x)-dependent)
Affine Scaling Transformation (AST) matrixW (x) by

W (x)
�
=�

� 1

2 (x): (7)

The relevant result concerning the behavior of the algorithm
is given by the following theorem which can be proved using the
general convergence theorem of Zangwill [31].

Theorem 1 ([8]) Let d(x) be a sign and permutation invariant
function that is strictly concave on the positive orthant and for
which�(x) > 0 for all x 2 R

n. Assume that the setfxj d(x) �
d(x0)g is compact for allx0. Letxk be generated by the algorithm

Wk+1 = W (xk) ; Ak+1 = AWk+1 ; (8)

qk+1 = A
+
k+1y ; xk+1 = Wk+1qk+1 ; (9)

with A+
k+1 the Moore-Penrose pseudoinverse ofA, starting with

x0 feasible,Ax0 = y. Then for alljxk+1j 6= jxkj (the function
j � j is defined component-wise), we havexk is feasible,d(xk+1) <
d(xk), and the algorithm converges to a local minimumd(x�),
xk ! x�, wherex� is a boundary point of some orthant and
Ax� = y.

As discussed in [23, 8], and mentioned above, convergence to a
boundary point ensures that a sparse solution to the inverse prob-
lemAx = y, although in general the solution will be a local, but
not a global, solution to the problem (2).

Separable Diversity Measures.For theseparableS-function di-
versity measures the scaling matrix� has a simplediagonalform
(and therefore easily invertible) and is positive definite. FordS(x)
anS-function we have

�(x) =
X
j

jpj j !j �pj (x) ; �pj (x) = diag

�
1

jx[i]j2�pj

�
:

This yields a rich class ofseparablediversity measures which sat-
isfy the conditions of Theorem 1 and which can be used to solve
the low-noise problem (2). Utilization of the algorithm for func-
tions drawn from theS-class (which contains thep-class) will re-
sult in sparse solutions toAx = y for specifieddS(x) and dic-
tionaryA. Thus we have an algorithm that can provide sparse so-
lutions to the ICA problem for factorizable priors drawn from the
S-class of diversity measures (and given a dictionaryA). Conver-
gence of the algorithm for other separable diversity measures, such
as the Shannon and Gaussian measures, is discussed in [23, 8].

5. DISCUSSION AND CONCLUSIONS

The algorithm of Theorem 1 was originally derived for constrained
minimization of the (separable) Gaussian entropy in [5, 6]. Prop-
erly interpreted within the majorization/concavity framework, ref-
erence [6] provides a rigorous justification for the use of thep-class
of diversity measures,dp for p � 0. In [23] it was shown that the
algorithm derived for the Gaussian measuredG(x) and that for the
limiting p-class measurelimp!0 dp(x) are identical and the re-
lationship between these two separable measures was examined.
Convergence was also shown for the Shannon entropy measures.
A general analysis of the case of positive definite scaling matrix



�(x) (which includes the separable generalS-class of measures)
and other cases (including Renyi entropy-based measures) can be
found in [8]. An interesting application to MEG signal processing
is given in [5, 6]. Other references are [1, 24, 25, 26, 9, 10].

Obviously, much work remains to be done. We are currently
investigating the use of multiple measurements for enhanced noise
robustness, extending the algorithm to the “noisy” case (1), and
considering extensions of the algorithm to efficiently solve the en-
vironmentally adapted basis learning problem (3). We are also
continuing to examine the problem of adapting the parameters (known
as hyperparameters in the Bayesian estimation and learning liter-
ature [32]) of theS-class of diversity functions to provide a good
density estimate,p�(x) of the unknown density ofx. In addition
we are looking into rate-of-convergence and scaling issues associ-
ated with our algorithm.

The majorization framework, focusing on sparse solution re-
quirements, complements the Bayesian/ICA framework, which is
concerned with statistically sound solutions to the signal represen-
tation problem. We have seen that the separable, Schur-concave/concave
diversity measures are particularly interesting in that they lead to
straightforward algorithm development (at least in the low-noise
case) and correspond to the use of a factorizable prior appropri-
ate for obtaining ICA solutions [15, 27]. In particular, theS-class
of diversity measures provides a large, parameterized class of sep-
arable diversity measures. In principle, a measure can be drawn
from this class in an “optimal” manner to better model thea priori
statistical properties of the environment, allowing for a parametric
density estimation of the environmental Bayes prior subject to the
constraint that the negative logarithm of the prior is concave.
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