
TOWARDS A ROBUST REAL-TIME DECODER
Jason Davenport, Richard Schwartz, Long Nguyen

BBN Technologies, GTE Internetworking
Cambridge, MA 02138, USA

ABSTRACT
In this paper we present several algorithms that speed up our
BBN BYBLOS decoder. We briefly describe the techniques that
we have used before this year. Then we present new techniques
that speed up the recognition search by a factor of 10 with little
effect on accuracy using a combination of Fast Gaussian
Computation, grammar spreading, and grammar caching, within
the 2-Pass n-best paradigm. We also describe our decoder
metering strategy, which allows us to conveniently test for
search errors. Finally, we describe a grammar compression
technique that decreases the storage needed for each additional
ngram to only 10 bits.

1. INTRODUCTION

Continuous speech recognition with a very large vocabulary
requires a large amount of computation. The amount of
computation also depends to a large degree on the quality of
speech, with the computation increasing by a significant factor
for more natural speech. Research systems frequently use 200-
500 times real time to achieve the highest possible accuracy.
While we can always decrease the computation by using an
aggressive beam search pruning strategy [12], our goal here is to
decode the speech with the least amount of computation, while
still obtaining accuracy as close as possible to that of our best
research system.

There have been several algorithms proposed to decrease the
search space [10][11][13]. We can also reduce the search space
using multiple-pass searches that perform successively more
detailed analyses of the sentence, using n-best or lattice
structures as intermediate reduced search spaces [5][15]. Finally,
there are algorithms dealing with particular parts of the
computation, such as the efficient evaluation of large numbers of
Gaussian probability densities [3].

The BBN BYBLOS research decoder uses a combination of
several techniques to reduce computation. In Section 2, we
briefly review the algorithms that we used as of a year ago to
obtain high speed. These include the forward-backward search, a
single-tree forward fast match, a two-pass n-best algorithm, and a
grammar caching algorithm.

During the past year we have developed new algorithms to
increase the speed of recognition by another factor of 10, while
decreasing the loss for using reduced computation. These new
algorithms include: a simple fast Gaussian computation, grammar
spreading that reduces the loss due to pruning, metering
techniques that allow us to directly and easily measure the loss
from pruning without having to greatly increase the computation,
and an algorithm that greatly reduces the memory needed to store

very large ngram language models in limited space. We will
describe these new algorithms in Section 3.

The result of the new algorithms has been an additional factor of
10 speedup over the past year, with a decreased loss due to
aggressive pruning.

2. PREVIOUS ALGORITHMS IN BYBLOS

The 1997 BYBLOS decoder used a combination of several
strategies. Here we review the previous algorithms used in the
decoder.

2.1 Forward-Backward Search

The 1997 BYBLOS research decoder used a combination of
several strategies. First, we used the Forward-Backward Search
[5][6]. In the forward pass we use an approximate fast match
that finds the likelihoods of several ending words in each frame.
Then, in the backward pass, we use a more detailed model, but
prune the search using the normalized forward-backward score.
We have shown that the computation for the backward pass can
be sped up by two orders of magnitude without loss even when
the models used in the forward pass are considerably less
accurate than those used in the backward pass. This allows us to
use very coarse or approximate models in the forward pass in
order to decrease the search time.

2.2 Single-Phonetic-Tree Fast-Match

In 1992 we developed a very fast forward-pass algorithm [4][14]
to go along with the Forward Backward Search. This algorithm
allowed us to perform continuous speech recognition for
dictation quality speech with large vocabularies. The algorithm
uses a single phonetic tree instead of multiple trees. We
continually reevalute the grammar probabilities in order to
estimate the probability of ending words. To further reduce
computation, we use composite triphone models averaged over
the various right contexts in the tree, and only consider a few
ending words at each frame. We use partial language model
probabilities in order to obtain the benefit of the language model
as early as possible. Despite the fact that this algorithm by itself
results in a much higher error rate, we show here that it almost
never causes a search error.

2.3 N-Best

We have developed several algorithms for computing the n-best
hypotheses [7][8], where our goal is to reduce the computation
but still retain enough good hypotheses so that rescoring with a
better model will increase accuracy. The most recent algorithm
[1] uses an inexpensive two-pass algorithm that costs very little.
It consists in making a lattice of word hypotheses from the

backward pass, inserting trigram probabilities into the lattice, and
then writing out the n-best sentence hypotheses without
reevaluating acoustic scores.

2.4 Ngram Cache

The search algorithm we use depends heavily on being able to
look up thousands of language model probabilities for each
frame efficiently. Ideally, we would store the probabilities in a
simple array, but the number of language model probabilities is
far too large. Typically, one stores the words that have been
observed to follow any particular state (i.e., history) in a list of
words and their associated probabilities. But searching this list
during recognition can be expensive. The average number of
words for a bigram state is around 1000. A binary search
requires 10 test and branch operations.

Instead, we create the appropriate columns of the array as they
are needed. We allocate several (say 100) cache arrays, each the
size of the vocabulary, and initialize them to NULL. We create a
list, one element per state, of NULL cache pointers that will be
used to keep track of the (100) states that are cached. When we
need to look up a language model probability for a particular
history, we first check the cache pointer for the state of that
history. If it has not been cached (cache pointer is NULL), then
we find the compressed block of language model probabilities for
that history’s state, point the history’s state cache pointer to one
of the empty cache arrays, and set the entries in the array for each
of the stored probabilities. Once this is done, we can look up the
probability for any following word with a single indirect access.

We typically look up a very large number of words for a given
state. Thus, the initial cost of setting several (say 1000) entries is
small compared to the savings. We manage this cache on the
basis of the last access time. Note that all stored probabilities are
represented as scaled log probabilities using just 8 bits. During
recognition we look up the floating point value in the appropriate
precomputed table with 256 values.

3. NEW ALGORITHMS

Here we present several algorithms that we have used over the
past year to further reduce computation, speed up the research
process and reduce memory requirements.

3.1 Fast Gaussian Computation (FGC)

Generally we try to avoid speeding up one part of the
computation, since it doesn’t result in a large factor. However,
our research speech recognition systems typically use a very
large number of Gaussian probability densities to obtain high
accuracy. Thus, the computation can be dominated by Gaussian
evaluations. When the beam search is very wide (slow) we spend
93% of decoder computation calculating Gaussian distances in
the backward pass and 33% in the forward pass. But with heavy
pruning (narrowing the beam) this becomes 94% in the backward
pass and 76% in the forward pass, so it is worth spending some
effort to decrease this one type of computation.

In the past, we attempted to reduce Gaussian computation by
using Linear Descriptive Analysis then choosing the best
Gaussians based on the first N dimensions of a feature vector.

However, the cost on accuracy was too large and the speedup
was minimal, so we abandoned this approach.

We chose to pursue a simpler variation of Padmanabhan’s
decision tree based FGC [3]. He builds a decision tree based on
minimizing the average entropy of allophone distribution.
Instead we use a simpler method using binary clustering. We
start with the means of all the Gaussians in the whole system and
build a decision tree using binary clustering [9]. Each leaf of this
tree represents a unique region of the feature space. At each leaf
we store a short list of the Gaussians from each codebook that are
worth considering. The short lists are made by traversing the tree
with labeled training data in a manner similar to that used in [3].

The process is as follows:

• Using a forced alignment, label the training data with
codebook and Guassian ids.

• Build the decision tree using binary clustering on the
means of the Gaussians.

For each frame in the training data:

• Find the leaf by walking the binary clustering tree.
• Add the Gaussian id to the short list of Gaussians for the

codebook with which this data point is labeled.

Thus, this algorithm determines the likely Gaussians for a
codebook to be any Gaussian that was ever used within that leaf.
If any codebook within a leaf has no samples in the training data,
we find the Gaussian that is closest to the mean of the leaf as the
sole Gaussian for this codebook.

During decoding, for each feature vector we traverse the decision
tree as we do when filling the tree. This requires only an average
of 2*depth distance calculations. Then, when we need to find the
most likely Gaussians for a codebook associated with a state, we
only consider the Gaussians in the short list. In the forward pass,
we use phonetically-tied mixtures (PTM) with 256 Gaussians per
codebook. We find that we can reduce the number of Gaussians
to an average of 28 per codebook. In the backward pass, we use
State-Clustered Tied-Mixtures (SCTM), and we can reduce the
average number from 64 to 16 Gaussians. The resulting speedup
depends on the amount of computation used for Gaussians in the
first place. We show the gains in speed and increase in word
error rate (WER) in the two tables below. Table 1 shows that for
a wide beam, the forward pass does not speed up very much,
while the backward pass speeds up by almost the same factor as
the reduction in Gaussian computation.

Model FGC Gauss/
Codebok

XR
T

Speedup
Factor

WER

Fw-PTM No 256 10.1 x 42.3

Fw-PTM Yes 28 6.6 1.5 42.4

Bw-SCTM No 64 18.1 x 25.9

Bw-SCTM Yes 16 5.2 3.4 26.3

Table 1. FGC vs. No FGC using a wide beam.

Table 2 shows that, with a narrow beam, the forward pass is also
sped up by a significant factor. Because we spend more time

calculating Gaussians, FGC has a greater effect on speedup. We
see an additional 2.6 speedup factor when we add FGC to a
narrow beam search with only a loss of 0.1 in WER.

Beam FGC xRT Speedup
Factor

Fw Pass
WER

Wide No 10.1 x 42.3

Wide Yes 6.6 1.5 42.4

Narrow No 3.6 2.8 42.8

Narrow Yes 1.4 7.2 42.9

Table 2. Effects of FGC on the forward pass.

3.2 Spreading the Grammar

During a beam search we generally keep any theory active if its
score is within some factor of the largest path score at that frame.
The beam search is clearly not admissible, because a theory that
currently scores worse might later have a better score. But we
hope that if the beam is large enough we will not often remove
the best scoring global path prematurely. The basic algorithm
works well if the different theories each get their scores in a
gradual way in a time-synchronous manner. One confounding
problem though is that the language model costs come not every
frame, but rather at the transition from one word to the next.
These language model transitions, which can often be below 10

-6

for the correct word, occur at different times for each theory.
Furthermore, we often exponentiate the language model
probabilities by two or more in order to balance them against the
acoustic probabilities. Thus a single theory can have its path
score decrease in one frame by 10

-12
, which is comparable to the

width of the beam that we use in the search. To avoid search
errors we must make the beam considerably larger.

 We observed with the single-tree fast match that the use of
incremental language model probabilities resulted in a very
smooth score profile over time, which in turn allowed us to use a
very narrow beamwidth. Even though our backward pass does
not use a tree, we can obtain the same benefit explicitly.

 We divide each ngram probability in the language model into a
fixed component and a history-dependent component. The fixed
component is obtained by some "average" ngram probability,
ps(w), which will be spread over the whole word. The variable
component is obtained by dividing the usual ngram probability,
p(w|h) by the fixed component for the word.

 p’(w|h) = p(w|h) / ps(w)

This fixed component is spread over the word uniformly, with
extra transition costs at each phoneme transition. Each cost,
pc(w), is given by

 pc(w) = ps(w)
1/np

where np is the number of phonemes in the word. For example,
the word ABOUT has four phonemes (AX-B-AW-T). If ps(w)

for ABOUT were 0.0001, then the four phoneme transitions
would each be 0.1.

We tried several weighted averages of the ngrams, but
surprisingly, found that the best method for computing the fixed
component is just to use the unigram probability of the word.

Table 3 shows the effect of the grammar spreading on the
computation/accuracy tradeoff. From the first two rows, we see
that when we use a fairly aggressive pruning (medium), the error
rate increases significantly (by 3.4% absolute). The next for
rows show the result with grammar spreading. If we use the
same medium beamwidth, the computation naturally increases
slightly, but we see that most of the lost errors are recovered.
Additionally, when we reduce the beamwidth further, we see that
the computation decreases further with a much smaller loss in
error rate.

Comparing the results, we can see that we can either reduce
computation by another factor of 2 with no additional loss, or
reduce the loss considerably by spreading the grammar.

Spread
Grammar

Beam
width

xRT WER

No Wide 5.2 26.3

No Medium 1.8 29.7

Yes Medium 2.0 27.4

Yes Narrow 1.6 27.9

Yes Narrower 1.1 28.6

Yes Even more 0.9 29.6

Table 3. Effect of spreading grammar in backward pass.

3.3 Metering

Our search algorithms discard hypotheses at several stages.
Some are simply due to pruning in a beam search, while others
are due to hypotheses discarded between stages in a multiple pass
search. There is always the concern that we might be
prematurely discarding correct answers. The typical approach to
test for this is to increase the amount of computation by a large
factor, increasing the beamwidth or saving more answers in early
passes. We have developed a family of techniques that enable us
to test for problems without increasing computation. In each
case, we provide an upper bound on how well we could do if we
postponed all decisions to the end.

For a particular development set, we can determine the time that
each correct word should appear using a forced alignment. Then,
during a recognition experiment, we can prevent the search from
pruning out any hypothesis that is part of the correct word in the
correct time. If running with this option reduces the word error
rate, we know there might have been pruning errors.

It is possible that the forward pass, which is very approximate,
could discard the correct word. However, it is not sufficient to
test whether a word is missing from the forward pass. Often a

word missed from the forward pass would not have been found in
the backward pass anyway. To test this, we can cause the
backward pass to add the correct word ending at every frame near
to the known correct ending. Again, if the error rate is
decreased, we know that there was some loss due to the forward
pass. Similarly for testing an upper bound on the backward pass,
we can force correct words in to the lattice at the appropriate
times and measure the effect.

When we tested the forward pass, we found that, even though the
error rate for the forward pass is much higher than that of the
backward pass, the upper bound loss due to the forward pass was
only 0.1% absolute. The backward pass showed a small loss due
to using the two-pass algorithm, however, the loss was small
compared to other algorithms that require as little computation.

3.4 Ngram Compression

Even with 1-byte probabilities the total storage for a large
language model with many millions of ngrams can be very large.
Most of the storage is used to represent the words in the model.
The incremental storage needed for each transition is two bytes
for the destination word plus one byte for the probability. We
have implemented an ngram compression strategy using a
combination of Huffman coding, quanitzation, and reordering to
cut the incremental storage to just 10 bits per transition: 6 bits for
the word ID, and 4 bits for the probability.

The technique relies heavily on redefining and reordering the
words such that the numbers are much smaller, and then using
Huffman coding. The steps are:

1. Sort the words in the vocabulary according to the
number of different bigrams where they are used as the
destinations. The word used most is given number 1.

2. Use these new numbers as the word Ids.
3. Sort the destinations for each state according to the new

word ID.
4. Delta code the sorted destination Ids and code the

differences with a Huffman code.

We use the fact that the trigram destinations for history w1,w2
must be a subset of the bigram destinations for history w2.

5. First code the trigram destinations as the position within
the corresponding list of bigram destinations.

6. Delta and Huffman code these numbers as with bigrams.

We quantize the ngram probabilities using 4 bits. We found that
this results in an increase in WER of only 0.2% absolute.

4. SUMMARY

We have described several new and reviewed several older
algorithms that help speed up recognition. We have shown that
the BBN BYBLOS system which incorporates these algorithms,
can reach near real-time speed with minimal loss in accuracy.
Specifically the 2-Pass N-best paradigm along with Fast
Gaussian Computation, grammar spreading and pruning have
been combined to produce a robust near real time decoder. We
have devloped a ngram compression technique that cuts ngram
memory usage in half and have described a metering algorithm
that directly determines a baseline quickly and provides an upper
bound on WER for our decoder.

Acknowledgements
This work was supported in part by the Defense Advanced
Research Projects Agency and monitored by Ft. Huachuca under
contract No. DABT63-94-C-0063. The views and findings
contained in this material are those of the authors and do not
necessarily reflect the position or policy of the Government and
no official endorsement should be inferred.

5. REFERENCES
[1] L. Nguyen, R. Schwartz, "Efficient 2-Pass N-Best Decoder",

EuroSpeech ’97, Rhodes, Greece, Sept. 1997, pp. 167-170.
[2] L. Nguyen, T. Anastasakos, et al., "The 1994 BBN Byblos

Speech Recognition System", Proc. of ARPA SLS
Technology Workshop, Austin, TX, Jan. 1995, pp. 77-81.

[3] M. Padmanabhan, E. E. Jan, L. R. Bahl, M. Picheny,
"Decision-tree based feature-space quantization for fast
gaussian computation", Proc. of 1997 IEEE Workshop on
Automatic Speech Recognition and Understanding, Santa
Barbara, CA, Dec. 1997, pp. 325-330.

[4] L. Nguyen, R. Schwartz "The BBN Single-Phonetic-Tree
Fast-Match Algorithm”, Proc. of ICASSP ’99, Phoenix AZ,
March 1999.

[5] S. Austin, R. Schwartz, P. Placeway, “The Forward-
Backward Search Algorithm”, Proc. of IEEE ICASSP-91,
Toronto, Canada, May 1991, pp. 697-700.

[6] L. Nguyen, R. Schwartz, et al., “Search Algorithms for
Software-Only Real-time Recognition”, Proc. of ARPA
Human Language Technology Workshop, Princeton, NJ,
Mar. 1993, pp. 411-414.

[7] R. Schwartz, S. Austin, “A Comparison of Several
Approximate Algorithms for Finding Multiple (N-Best)
Sentence Hypotheses”, Proc. of IEEE ICASSP-91,
Toronto, Canada, May 1991, pp. 701-704.

[8] L. Nguyen, R. Schwartz, et al., “Is N-Best Dead”, Proc. of
ARPA Human Language Technology Workshop, Princeton,
NJ, Mar. 1994, pp. 411-414.

[9] J. Makhoul, S. Roucos, H. Gish, “Vector Quantization in
Speech Coding”, Proc. of IEEE, Vol. 73, No. 11, November
1985, pp. 1551-1588.

[10] P.S. Gopalakrishnan, L.R. Bahl, “Fast Match Techniques”,
Automatic Speech and Speaker Recognition, Advanced
Topics, Kluwer Academic Publishers, Ch. 17, pp. 413-428.

[11] H. Ney, R., et al, “Improvements in Beam Search for 10000-
Word Continuous Speech Recognition”, Proc. ICASSP ’92,
San Francisco, CA., Mar. 1992, pp. I.9-12.

[12] B.T. Lowerre, “The Harpy Speech Recognition System”,
PhD Thesis, Carnegie-Mellon Univ., 1976, Pittsburgh, PA.

[13] F. Alleva, X. Huang, M. Hwang, “An Improved Search
Algorithm Using Incremental Knowledge for Continuous
Speech Recognition”, ICASSP-93, April 1993, pp. 307-310.

[14] R. Schwartz, L. Nguyen, “Single Tree Method for Grammar
Directed, Very Large Vocabulary Speech Recognizer”, US
Patent 5621859, Apr. 1997.

[15] R. Schwartz, L. Nguyen, J. Makhoul, “Multiple-Pass Search
Strategies”, Speech and Speaker Recognition, Advanced
Topics, Kluwer Academic Publishers, Ch. 18, pp. 429-456.

