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ABSTRACT
d-MUSIC estimates the DOA of two closely spaced sources
using a single array snapshot. To overcome the coherent signal
problem d-MUSIC utilizes additional information, specifically
the derivative of an array snapshot. The combined vector set
produces a full rank signal space projector. The algorithm nearly
attains the Cramér-Rao bound for typical air traffic control
problems. As it does not require a subspace decomposition (e.g.,
eigenstructure) and all operations are highly vectorized it can be
readily implemented in real-time. The algorithm is tested using
vertical linear array data with a low flying helicopter. With a
spacing of 16% to 35% of a beamwidth between the direct and
surface reflected rays, the d-MUSIC rms error is 9.6% of a
beamwidth for the 4 data collections while MUSIC resolved the
two rays for 2 of the 4 cases with a rms error of 18.1%.

1. INTRODUCTION

One of the challenging tasks of both air traffic control and air
defense is estimating the altitude of aircraft at low elevation
angles. The severe multipath contamination typically present in
low angle tracking will often lead to a rank deficient problem..

Complicating the coherent signal problem is the need to resolve
the sources using only a few array snapshots. As the system may
rotate to provide azimuth coverage it may only be able to extract
a few snapshots in the direction of the target for each dwell.
Alternatively, the system may step through a sequence of
transmit frequencies permitting only a few snapshots per
frequency burst. Even if more than one snapshot is available the
system will often need to perform some form of coherent time-
series analysis (e.g., Doppler processing using a FFT) to provide
gain for detection and to isolate the moving target from the
clutter/interference background. In that event it may only be
feasible to use a single array snapshot, specifically that of the
frequency bin containing the target.

These are serious limitations. Another issue is the need to
minimize costs by deriving a computationally simple algorithm
that can be easily implemented in real-time.

An algorithm which attempts to meet this requirement is
derivative-MUSIC or simply d-MUSIC. It bypasses the need to
estimate the signal space of the 2 sources using a matrix
factorization technique by constructing a full rank signal
projector using the input snapshot vector and its derivative
following a forward-backward operation to balance the complex
amplitude of the two rays. The orthogonal vector set is used to

construct an estimate for the signal space projector and the
source bearings can be estimated using a root-MUSIC procedure.

Two versions of the algorithm are derived here. Both are for an
uniform linear array of sensors. The primary algorithm is for the
case when the centroid of the direct and surface reflected rays is
known. This is typical of air traffic control problems where the
aircraft altitude and range is much greater than the array height
(i.e., the flat-earth approximation [1]). The second algorithm is
for the case when the cluster centroid is unknown. This is typical
of low flying aircraft at short ranges.

A data set is available to test the second version of the algorithm.
This data was graciously provided to Raytheon by Defence
Research Establishment Ottawa (Canadian DND) under a
research contract. The data was collected in October of 1995 at
Osborne Head, Nova Scotia using the Experimental Array Radar
System (EARS). In the subset of the data to be analyzed here a
helicopter hovered at an altitude of 30.5 and 61 meters over the
sea at a range of 8 km and data was collected at both 8.9 and 9.4
GHz (4 collections in all). The lower 6 channels of the EARS
vertical linear array of horns are available for this study.

Much of the material to be discussed here is presented in
Howell’s thesis [2]. Drawing upon this work the paper is
organized as follows. In Section 2 both versions of the d-MUSIC
algorithm are derived. In section 3 the theoretical performance
analysis of [2] is summarized and the d-MUSIC variance is
compared to the Cramér-Rao bound (CRB) for the case of a
known cluster centroid. The error analysis and CRB derivation is
based on the well known approach of Stoica and Nehorai in their
analysis of the MUSIC algorithm [3]. In section 4 the Osborne
Head data is analyzed using both the d-MUSIC and MUSIC
algorithms.

2 d-MUSIC
The specular multipath signal model can be represented as

x a a n( T T R Rt s t s t t) ( ) ( ) ( ) ( ) ( )= + +θ ρ θ (1)

where the T and R subscripts denote the direct path and surface
reflected rays, respectively. θ denotes elevation angle, s the
signal time series, ρ the surface reflection coefficient, n the
combined noise/clutter/interference vector, x the array snapshot
vector and a(θ) is the linear array steering vector defined as
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where (⋅)T denotes transpose, α = 2πdsin(θ)/λ, d is the sensor
spacing, λ is wavelength and N is the number of sensors.

Say that only array snapshot is available. There may in fact be
more but it is assumed that some form of coherent processing
(e.g., an FFT) is applied to the data to separate the target echo
from the clutter/interference background as part of the detection
process. Hence, the only vector that may be available is the
Doppler frequency bin corresponding to the detection.

The single snapshot is modeled as

v a a w= + +k k1 T 2 R( ) ( )θ θ (3)

where k1 and k2 are complex constants and w is a noise + clutter
+ interference vector. If w is due to zero mean spatially and
temporally white Gaussian noise alone, its variance will be
represented as σ2/K in recognition of the fact that some form of
coherent processing involving the effective addition of K
snapshots was employed.

Without any loss of generality the center of the array is chosen as
the phase reference point. Clearly a(θ) is a centro-Hermitian
vector, i.e., J a(θ) = a∗(θ) = a(-θ) where ∗ denotes the complex
conjugate and J is a reverse permutation matrix (ones running
along the anti-diagonal and zero everywhere else).

An important property of exponential vectors such as a(θ) is that
its derivatives is simply an amplitude weighted version of a(θ).
For example, the first derivative of a(θ) is
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where the linear array derivative operator D is defined as
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and diag{⋅} converts a column vector into a diagonal matrix.
Note that the first derivative is an anti-symmetric vector. As a(θ)

is symmetric it follows that a a 0H ( ) �( )θ θ = .

Derivative vectors can be particularly useful for resolving two
closely spaced sources.  Let δ = αT - αR. If the sources are closely
spaced then δ is small and we may use the following first-order
Taylor series expansions to relate the two steering vectors
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Subtracting the two Taylor series yields
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This is a profound result as it permits us to relate the signal space
of the steering vectors to that of their derivatives. In strict terms,
the space of [a(θT) a(θR)] and [ ]�( ) �( )a aT Rθ θ do not overlap, but

for the special case of closely spaced sources the two spaces do
have an approximate intersection point.

Say that k1 = k2 in (3) then v will be proportional to a(θT) + a(θR)
and Dv will be proportional to a(θT) - a(θR). Two independent
and orthogonal vectors that span the same signal space.

Note that the MUSIC algorithm attempts to construct the signal
space projector PS defined for 2 sources as
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where p1 = a(θT) + a(θR) and p2 = a(θT) - a(θR).

Hence, if k1 = k2 so that v is proportional to a(θT)+a(θR) we could
immediately construct an estimate for PS by substituting p1 = v
and p2 = Dv. Even if  k1 ≠ k2 we may exploit other information to
equalize the gain of the two steering vectors, specifically the
centro-Hermitian property.

Let φ = (θT+θR)/2, the geometric center of the cluster. The vector
rotation operator is defined as SR(φ) = diag{a∗(φ)}. The product
SR(φ)a(θ) effectively rotates the vector a(θ) to point in the
direction sin-1{sinθ - sinφ}.

Say that the cluster centroid φ is known a priori which is typical
of many air traffic control problems where the aircraft range and
altitude is sufficiently large relative to the antenna height such
that the flat earth approximation is valid (i.e., θR = -θT). Applying
the rotation property we may derive
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where γ = (θT - θR)/2 is half the source spacing.

Using the centro-Hermitian property we can apply the following
forward-backward operation to equalize the amplitude of the two
steering vectors
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where I  is the identity matrix. Though the two steering vectors
now have equal gain factors the cost of this procedure is convert
spatially white noise into spatially correlated noise with
covariance matrix (I  + J) σ2/K.

As the two steering vectors now have equal gain factors we can
quickly construct the d-MUSIC estimate for the  signal space
projector using u and �u Du=

�
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The source bearings may be quickly computed using the efficient
root-MUSIC algorithm.

The above represents the primary version of the d-MUSIC
algorithm, where  the cluster centroid φ is known.  Even if φ is
not known it is still possible to employ this algorithm in a grid
search scheme to locate the two source bearings.



This second version of d-MUSIC involves a grid search over a
fixed grid of φ values to find the solution point that best fits the
input vector v.  For each value of φ the d-MUSIC algorithm will
produce an estimate (θ1,θ2) for the source bearings. Using (θ1,θ2)
we may construct a null space projector PN = I  - PS and compute
vH PN v.  The grid point with solution (θ1,θ2) which results in a
minimum for vH PN v represents the true solution point.

The first algorithm for the case of known φ is conceptually
simple. No complex matrix factorization technique such as an
eigenvector or singular value decomposition is required and all
other operations are highly vectorized. As such this algorithm
can be easily implemented in a real-time setting.

The second algorithm requires more computation, but again no
complex matrix factorization is required and all operations are
highly vectorized. It too can be implemented in a real-time.

This represents a first description of the d-MUSIC concept. The
fundamental principle which guides d-MUSIC is the creation of
additional signal space vectors using derivatives to add to or
complete the span of the signal space. Many other versions of the
same basic algorithm can be constructed. The building blocks for
a multi-source d-MUSIC algorithm as well as a planar array
d-MUSIC algorithm is presented in [2].

The d-MUSIC algorithm is unique in that it is highly insensitive
to the problem of signal correlation. As it uses only snapshot
vector it is largely irrelevant if the sources are correlated or not.
In fact, the results should improve for known φ if the sources
coherently add as the SNR of v will increase (this conjecture is
borne out in the performance analysis). There is one important
case where d-MUSIC will fail, specifically v = a(θT) - a(θR), the
vector d-MUSIC attempts to construct. This is a moot point
however as the probability of detection is low for this case.

3. PERFORMANCE ANALYSIS

A theoretical error analysis of the primary d-MUSIC algorithm
(known φ) is presented in [2]. This analysis closely follows the
approach developed by Stoica and Nehorai [3] who analyzed the
MUSIC algorithm and derived the Cramér-Rao lower bound for
the general direction finding problem.

When φ is known the problem reduces to estimating one
parameter, the source spacing.  The Cramér-Rao bound (CRB)
for the source spacing is really a special case of the general CRB
developed in [3]. The modifications required to adapt the CRB of
[3] to derive the source spacing CRB is listed in [2].

The theoretical model for the d-MUSIC error variance is a
complicated expression involving nearly a hundred terms. The
large number of terms is mainly due the fact that the d-MUSIC
noise is spatially correlated and the noise of the signal space
vector and its derivative is highly correlated. It is beyond the
scope of this paper to present the full analysis along with the
CRB derivation. Instead the reader is referred to [2] and a
summary of the main findings will be presented here.

In this example a 10 sensor linear array with a spacing of λ/2 will
be used. K =100 and the signal covariance matrix S for the equal
power sources is  modeled as

S=








−

1

1

e

e

j

j

χ

χ

(12)

where χ represents the phase difference between the direct and
surface reflected rays. As it is inexpensive to employ forward-
backward averaging of the form (R + JR∗J)/2 in MUSIC the
MUSIC variance of [3] along with the 2 parameter CRB will
both assume forward-backward averaging. The result of this
averaging is to replace the off-diagonal terms of S with cos χ.

The source spacing is referenced to the Rayleigh resolution
beamwidth of the array defined as the spacing from the peak of
the broadside beam to the first null.

To illustrate the main result of the performance analysis consider
the case of σ2 = 1 which corresponds to a detection SNR of about
30 dB for coherent sources.  Figure 1 represents the d-MUSIC
result for 4 values of χ and Figure 2 is the MUSIC result.
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Figure 1. d-MUSIC variance for σ2 = 1
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Figure 2. MUSIC variance for σ2 = 1



Note that the d-MUSIC algorithm nearly attains the CRB with
the best results arising for positive coherence (χ = 0). Overall,
the d-MUSIC algorithm is largely insensitive to the problem of
signal correlation.

In contrast the MUSIC algorithm really only attains the CRB
when the sources are uncorrelated (χ = 90°).  Note that the single
parameter CRB of Figure 1 is at a lower level than the 2
parameter CRB of Figure 2, as expected.

Due to the complexity of the problem a theoretical performance
analysis of the grid search version of d-MUSIC to locate the
cluster centroid will be difficult. A large number of Monte Carlo
simulation were used in [2] to investigate this algorithm. In
summary the second algorithm behaved much like the main
algorithm but with degraded accuracy. In comparison to MUSIC
it attained a substantially lower error variance. The following
experimental data will be used to support these findings.

5. EXPERIMENT RESULTS

The Osborne Head data is analyzed using the grid search version
of d-MUSIC and compared to the MUSIC algorithm. A subset of
the data is presented here and the full results are listed in [2].

In this experiment the lower 6 channels of the EARS vertical
linear array were available for analysis.  The sensor spacing is
12.5 cm with a array height of 27.8 m. The Sea King helicopter
however at a height of 30.5 m and 61 m at a range of 8 km. The
target SNR at detection is about 40 dB, the signal-to-sea clutter
ratio is better than 30 dB. At 8.9 GHz the Rayleigh beamwidth
(peak to first null) is 2.57° and the direct and surface reflected
angle spacing is 16% and 33% of a beamwidth.  At 9.4 GHz the
beamwidth is 2.44° and the source spacings is 17% and 35% of a
beamwidth. The 1900 snapshots are divided into non overlapping
blocks of 100 snapshots each and a modified version of the
technique of [4] is used to calibrate the array (see [2] for details).

The MUSIC algorithm failed to resolve the 2 sources for both 9.4
GHz measurements. However, grid-search d-MUSIC successfully
resolved the 2 ray paths for all 4 cases.  The d-MUSIC bias and
rms error for these 4 cases averages to 2.3% and 9.6% of a
beamwidth, respectively.  For the two 8.9 GHz cases in which
MUSIC resolved the sources the MUSIC bias and rms error is
6.8% and 18.1% respectively.  Dropping the number of
snapshots to 25 has only a marginal impact on d-MUSIC with the
rms error increasing to 10.7%. In contrast the MUSIC rms error
increased to 46% with the 6 dB decrease in SNR.

Figures 3 and 4 depicts the 8.9 GHz d-MUSIC and MUSIC
estimates for the source spacing (has an unique relationship to
target altitude [1]). The dashed line represents the true spacing.

6. SUMMARY

The d-MUSIC algorithm is attractive for the low angle direction
finding problem in a multipath environment, especially for
aircraft tracking scenarios where the center of the signal plus
multipath cluster is known (typical of distant aircraft). It is
relatively insensitive to the problem of signal correlation and is
computationally simple. As it uses only one array snapshot vector
it can be easily integrated into most radar applications.

Future work will focus on further testing of the algorithm using
experiment data and to derive a theoretical performance analysis
for the grid-search version of the technique.

5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d−
M

U
S

IC
 S

ou
rc

e 
S

pa
ci

ng
 E

st
im

at
e 

[d
eg

]

Index for each Block of 100 Pulses

a) d−MUSIC

d−MUSIC Bias      =   0.11 deg

d−MUSIC RMS Error =   0.25 deg

5 10 15
0

0.5

1

1.5

2

2.5

M
U

S
IC

 S
ou

rc
e 

S
pa

ci
ng

 E
st

im
at

e 
[d

eg
]

Index for each Block of 100 Pulses

b) MUSIC

MUSIC Bias      =   0.20 deg

MUSIC RMS Error =   0.48 deg

Figure 3. 8.9 GHz results for 30.5 m helicopter altitude.
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Figure 4. 8.9 GHz results for 61 m helicopter altitude.
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