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ABSTRACT

In this paper, we describe a prototype spoken language sys-
tem that loosely integrates a speech recognition component
based on hidden Markov models with a constraint depen-
dency grammar (CDG) parser using a word graph to pass
sentence candidates between the two modules. This loosely
coupled system was able to improve the sentence selection
accuracy and concept accuracy over the level achieved by
the acoustic module with a stochastic grammar. Timing
profiles suggest that a tighter coupling of the modules could
reduce parsing times of the system, as could the develop-
ment of better acoustic models and tighter parsing con-
straints for conjunctions.

1. INTRODUCTION

In this paper, we describe a prototype of a spoken lan-
guage system that integrates a speech recognition compo-
nent based on hidden Markov models with a constraint de-
pendency grammar (CDG) parser. The underlying goal
of our combined system is to identify the ’best’ overall
sentence candidate with respect to all available knowledge
sources and map that candidate to an internal representa-
tion. How best to achieve this goal is an important problem
that deserves careful study.

The question of how to integrate the language mod-
els with speech recognition systems is gaining in impor-
tance as speech recognizers are increasingly used in hu-
man/computer interfaces and dialog systems [3, 10]. Al-
though many current systems tightly integrate stochastic
language models, with a power limited to a regular gram-
mar, into the recognizer, a language processing module is
needed to ensure that the speech signal is mapped to an
internal representation that the computer requires in or-
der to act based on the spoken interaction with the user.
Obtaining a syntactic representation for the spoken utter-
ance, therefore, has a high degree of utility for mapping to
a semantic representation.

A language processing module that is more powerful
than a regular grammar can be loosely, moderately, or tightly
integrated with the spoken language system, and there are
advantages and disadvantages associated with each choice
[3]. A loosely-integrated language model can be developed
independently of the speech recognition component, which
is clearly an advantage. However, such a module cannot di-
rectly reduce the search space of the acoustic module. On

the other hand, to tightly integrate a language model with
the power of a context-free grammar with the acoustic mod-
ule requires that the power of the two modules be matched,
making the integrated system fairly intractable and difficult
to train. A moderately integrated language model falls in
between the previous two in that it can guide the acous-
tic module’s search; however, moderate integration is likely
to be more difficult to engineer because information must
travel between the modules in both directions.

To begin investigating the integration of the speech recog-
nition component with the CDG parser, we built a loosely
coupled system and conducted experiments to determine
the best way to enhance the processing speed and accu-
racy of the combined system. Figure 1 depicts the system
(dashed lines indicate components not incorporated in the
current system). A word graph is used to pass potential
sentence hypotheses between the acoustic and the language
modules. This representation was chosen because it allows
us to investigate the potential for the CDG module to im-
pact the choice of the final sentence candidate in a more
tightly integrated system. In addition, the word graph is a
more compact datastructure than the recognition lattice of
the speech recognizer. Word graphs support an aggregate
processing view as well as a stream-based view, providing
flexibility for examining integration alternatives.

2. THE MODULES

In this section we describe the components of our system.
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Figure 1: Block diagram of the loosely-coupled spoken lan-
guage system.



2.1. The Word Recognizer

The underlying structure for the recognition network is
provided by a multiple-mixture triphone Hidden Markov
Model (HMM) [9], with a simple integrated grammar (ei-
ther bi-gram or word pair). Our system was implemented
using HTK Version 2.1 by Entropic [6, 12]. Observation
output distributions under this system are represented by
multiple stream Gaussian Mixture Models (GMMs), with
distribution parameters and state transition probabilities
re-estimated using the Baum-Welch algorithm. Recogni-
tion is achieved using a token-passing implementation of
the Viterbi algorithm, the output of which is a large recog-
nition lattice containing acoustic and grammar likelihoods
for each word node.

The output of our recognition module is a word graph
annotated with probabilities that allow the highest proba-
bility sentences to be examined in order of decreasing prob-
ability. To accommodate the language model, we define
a word graph as a directed acyclic graph representing the
possible word paths through the utterance such that the
nodes represent the words and connecting arcs represent
word transitions. Construction of the word graph is accom-
plished by post-processing the recognition lattice. Since the
lattice contains full alignment information such as start and
end times for each word node, it can include many identical
or nearly identical paths that vary only with regard to time
alignment. The language processing system does not need
this alignment information and is slowed by the redundant
information. Word graph generation, therefore, includes an
algorithm to eliminate identical sub-graphs from the lattice,
resulting in a graph that represents all possible word-level
paths without eliminating or adding any path possibilities.

Fach word graph has a distinct starting node and a
distinct ending node. Pseudocode for the compression al-
gorithm is shown below, where prevlist (i) denotes the
list of nodes that directly precede node i, and nextlist (i)
denotes the list of nodes that directly follow i.

While (number of graph nodes continues to change)
For all Nodes i
For all Nodes j # 1
If ((prevlist(i)=prevlist(j)) OR
(nextlist(i)=nextlist(j))
Replace all references to j with i
Delete node j

The word graphs created using this algorithm have a
size that is on average 42.8% of original lattice size, and
the time to create the word graph represents only 1.9%
of recognition time. An alternative algorithm was initially
considered that compressed nodes based on time alignment.
For comparison, this algorithm created word graphs with
an average size of 42.4% of original lattice size, and the
time to create the word graph represented only 1.1% of
the recognition time. Although this algorithm was able to
construct more compact word graphs (0.4% smaller), it did
so at the expense of adding spurious paths not found in
the original recognition lattice. The first algorithm was
chosen because it creates only slightly larger word graphs
containing only legal lattice paths.

We have explored the effects of different types of prun-
ing and stochastic grammars on word graphs and N-best
lists produced by our acoustic module trained on the RM
corpus [5]. It was determined that by allowing an unlimited
number of active models in our HMM that the word graph
contains the correct sentence in 98% of the test cases. In
17% of the cases, the word graph contains the correct sen-
tence but the correct sentence is not the top candidate in
an N-best search; in .89% of the cases, the word graph con-
tained the correct sentence when it was not in the 10-best
list. The average size of these word graphs was 23.3 words,
compared to an average actual sentence length of 8.8. [t
was concluded that the word graphs form an efficient inter-
face between continuous-speech recognition and our parser:
they achieve high coverage with modest graph densities,
and they can be generated with computation times compa-
rable to standard N-best recognition without introducing
spurious sentence hypotheses.

2.2. The Parser

Our language module is based on Constraint Dependency
Grammar, which was originally conceived by Maruyama [7].
In contrast to context-free grammars, CDG uses constraints
rather than production rules for its grammar rules, and
the sentence structure is recorded by assigning role values
consisting of dependency links (called modifiees) and tags
(called labels) to named slots (called roles) associated with
each word. The assignment of a role value to a role spec-
ifies a grammar relation that is a component of the parse
for the sentence. For example, when the governor role for a
noun is assigned a role value subject-3, this indicates that
it is a subject governed by the word in the sentence with a
position tag 3. For CDG, the parsing algorithm is framed
as a constraint satisfaction problem in which the parsing
rules are the constraints and the solutions are the parses.
A sentence s is said to be generated by the grammar G
if there exists an assignment A that maps role values to
the roles for each of the words such that the constraints are
satisfied. CDG has been adapted to support the simulta-
neous analysis of sentences with multiple alternative lexical
categories (e.g., canis a noun, verb, or modal) and multiple
feature values (e.g., the as a determiner can modify nouns
that are third person singular or third person plural) [3].
The resulting parser can also simultaneously process the
sentence hypotheses resulting from the word segmentation
ambiguity of a speech recognizer [3].

The CDG parsing algorithm offers a flexible and pow-
erful parsing framework for our spoken language system.
In addition to the fact that it can simultaneously analyze
all sentences in a word graph [3], there are a variety of
other features that make it attractive. First, the generative
capacity of a CDG is beyond context-free languages [7].
There is evidence for the need to develop parsers for gram-
mars that are more expressive than the class of context-free
grammars but less expressive than context-sensitive gram-
mars. Second, free-order languages can be handled by a
CDG parser without enumerating all permutations because
order among constituents is not a requirement of the gram-
matical formalism [3]. Third, the CDG parser uses sets of
constraints which operate on role values assigned to roles
to determine whether or not a string of terminals is in the



grammar. These constraints can be used to express legal
syntactic, prosodic, semantic relations, as well as context-
dependent relations. Constraints can be ordered for effi-
ciency or they can be withheld. The presence of ambiguity
can trigger the propagation of additional constraints to fur-
ther refine the parse for a sentence [2]. This flexibility can
be utilized to create a smart language processing system:
one that decides when and how to use its constraints based
on the state of the parse. Fourth, a CDG parser is highly
parallelizable [4]. Finally, we have developed methods for
learning CDGs directly from labelled sentences in a cor-
pus [11]. This work was enabled by the fact that CDG
constraints are PAC learnable from positive examples of
dependency relations. This work provides a foundation for
speeding the grammar development cycle and for creating
constraints from corpora that will be tightly constraining.

3. EXPERIMENTAL EVALUATION
3.1. The Corpus and the CDG Grammar

In order to evaluate the use of word graphs as an effective
interface between our speech recognition and natural lan-
guage components, we have performed initial experiments
on the DARPA Resource Management (RM) corpus [8], a
1000-word task domain defined for speech recognition eval-
uation. It was chosen for several reasons: the properties of
the corpus are fairly well understood; its manageable size
(5000 utterances) makes it a good platform for the devel-
opment of techniques allowing extensive experimentation;
and it is a corpus with syntactic variety and reasonably
rich semantics.

For this experiment, we have constructed a CDG to
parse the sentences in this corpus. The corpus contains
2845 sentences derived from sentence templates based on in-
terviews with naval personnel familiar with naval resource
management tasks. It contains wh-questions and yes/no-
questions about ships, ports, etc., along with commands to
control a graphics display system. While the RM corpus is
restricted, it does contain a wide variety of grammar con-
structs and a fairly rich semantics. The CDG constructed
to cover this corpus uses 16 lexical categories, 4 roles, 32
labels, 15 lexical feature types (for example, subcat, agr,
case, verb_type (e.g.7 plroglressive)7 mood, gap, inverted,
voice, gender, sem_type, and conj_type), and a total of
1384 unary and binary constraints.

3.2. Results

To evaluate the impact of the word graph construction
scheme on the running time of our parser, we initially com-
pared the sizes and parsing times of word graphs directly
constructed (i.e., without compression) from the recogni-
tion lattice with the word graphs constructed using the com-
pression algorithm from section 2.1. Because extensive in-
vestigation of uncompressed word graph parsing has a high
processing cost, we limited the investigation to five ran-
domly selected uncompressed word graphs and their com-
pressed counterparts. In every case the resulting word graph
was at most 52% the size of the uncompressed word graph
(with an average of 44%), and the parsing time for the com-
pressed word graphs was at least 3.3 times faster (with an
average of 4.3 times faster).

The recognizer with stochastic grammar returns the top
sentence candidate in 83% of the cases; hence, 17% of the
test utterances are not correctly selected as the target sen-
tence. To evaluate the impact that the CDG grammar has
on recognition accuracy of the combined system, we have
conducted two experiments to determine whether the addi-
tion of the parsing module improves the sentence selection
accuracy of the combined system over the recognizer with
stochastic grammar. In the first experiment, word graphs
were generated by the speech recognizer for 100 randomly
selected utterances and then parsed by our CDG parser.
In the second experiment, word graphs were generated by
the speech recognizer for 103 utterances chosen randomly
from those for which the top scoring hypothesis was not the
target sentence.

In the first experiment, the target sentence had the
highest probability in 90 out of the 100 utterances tested,
so the recognizer with stochastic grammar achieved a 90%
sentence selection accuracy. Furthermore, in the ten cases
that the recognizer plus stochastic grammar failed to return
the target sentence, four of the returned sentences differed
only slightly from the meaning of the target sentence (sub-
stitution or deletion of a determiner), resulting in a concept
accuracy [1] of 94%. The word graphs constructed by this
recognizer placed the target sentence as the highest scor-
ing path in 90 of the word graphs, second highest in nine,
and third highest in one. For the 10 word graphs in which
the top scoring hypothesis was not the target sentence, the
CDG constraints eliminated the higher scoring sentence hy-
potheses and returned the target sentence in 4 additional
cases. Hence, our CDG parser improves the sentence ac-
curacy from 90% to 94% on this set of sentences. Further-
more, in the six cases that the the parser failed to return
the target sentence, four of the sentences returned differed
only slightly from the meaning of the target sentence, giv-
ing a concept accuracy of 98% compared to 94% for the
recognizer.

In the second experiment, the target sentence was not
identified by the recognizer plus stochastic grammar as the
highest scoring sentence hypothesis in any of the 103 test
utterances; however, 42 of the sentences returned differed
only slightly from the target sentence, giving a sentence
selection accuracy of 0% and a concept accuracy of 41%.
The word graphs constructed by this recognizer placed the
target sentence as the the second highest scoring path in 70
of the graphs, third highest in 15 of the word graphs, fourth
highest in 13 of the word graphs, fifth in two, sixth in one,
and seventh in two. When these word graphs were parsed by
the CDG parser, the target sentence was correctly selected
in 38 cases, increasing the sentence selection accuracy from
0% for the recognizer to 37%. In the 65 cases that the parser
plus recognizer failed to return the target sentence, 50 of
the sentences returned differed only slightly from the target
sentence. Hence, the concept accuracy of our combined
system was 85% compared to 41% for the recognizer plus
stochastic grammar. In the remaining fifteen cases, the
parser selected sentences that were not semantically close
to the target utterance. Most of these cases involved word
confusibility (e.g., get vs. give; in vs. and; sizty vs. sizteen);
however, some had multiple word differences.

These experiments show that compact word graphs can



be constructed for the test utterances in the RM corpus, and
that a hand-constructed CDG grammar provides additional
constraints that improve the sentence selection accuracy. In
addition to increasing the sentence selection accuracy, the
CDG parser was able to eliminate many spurious sentence
candidates. A measure of this is the percent decrease in the
size of the word graph as a result of applying the grammar
constraints. The average word graph size before parsing in
experiments 1 and 2 was 21.83 and 26.48 word nodes, re-
spectively. After parsing, the word graphs contained 15.62
and 18.66 word nodes, respectively.

These results confirm that constraints improve accu-
racy, but they do not necessarily imply that a loosely inte-
grated system with a word graph as the interface represents
the most efficient integration of the acoustic module with
syntactic and semantic constraints. To get a better idea, we
have compared the time to parse the word graphs from our
two experiments with the time to parse sentences, one by
one in order of acoustic probability until the target sentence
is reached. Although the word graph parser is sometimes
faster than this one-at-a-time parser, the time to process the
list of sentences takes only 25% of the time that it takes to
process the word graph in first experiment and 29% of the
time in the second. These results suggest that a more mod-
erate coupling should be more time efficient. At the very
least, methods for decreasing word graph size with minimal
reduction in accuracy will improve parsing time: the sizes
of the word graphs are significantly correlated with the time
to parse the word graph (r=.65 and r=.71).

This is not the entire story, however. A second factor
was found to impact the parsing time of the word graphs:
the presence of one or more conjunctions in the word graphs.
The time to parse word graphs without conjunctions was
11% and 12% of the time to parse word graphs with con-
junctions in experiments 1 and 2, respectively. Although
the word graphs with conjunctions were larger than the
word graphs without conjunctions (15.5 versus 25.9 and
19.21 versus 30.05), this does not completely account for
the extreme difference in parsing time. There are two ad-
ditional factors. First, word graphs with conjunctions tend
to have significantly more role values per node at the out-
set than word graphs without conjunctions, namely 108.16
versus 207.29 and 155.92 versus 259.87; hence, conjunctions
create a higher degree of ambiguity for the parser to deal
with. This suggests the need for better acoustic models for
conjunctions to speed up the processing of the word graphs.
A second factor concerns the fact that there was a dispar-
ity in the number of role values that remain in the parse
graph but are not used in parses of word graphs with and
without conjunctions. The number of role values remaining
at the end of parsing not used in parses was .08 (only 3
cases) and 2.15 (4 cases) for word graphs without conjunc-
tion and 12.56 (24 cases) and 25.07 (46 cases) on average in
the presence of a conjunction. This suggests that grammar
constraints constructed to parse conjunctions were not as
restrictive as the other constraints.

4. CONCLUSIONS AND FUTURE WORK

Given the results of this experimental evaluation, we con-
clude that syntactic and semantic constraints improve sen-
tence recognition and concept accuracy over the word rec-

ognizer with stochastic grammar. Constraints reduce word
graph size, suggesting that they are capable of reducing the
search space for the top sentence candidate in a more tightly
integrated system. Finally, more feedback from the parser
to the recognizer is likely to increase not only the accuracy,
but also the speed of the combined system.

In light of our investigations, future work will focus on
three aspects of the problem of integrating the acoustic and
language models. Grammar constraints for future experi-
ments will be learned directly from corpora to obtain tighter
constraints. A moderately coupled integration scheme will
be designed to improve the efficiency of the combined sys-
tem. Finally, because conjunctions are a source of signif-
icant parser ambiguity, more selective acoustic models for
conjunctions (such as and) will be developed.
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