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ABSTRACT

Reliable performance is very important for high speed
channel equalizers and echo cancellers used in high speed
communications channels. A common type of hardware
fault occurs when the coe�cients get \stuck" at an un-
controllable value. Such faults lead to larger overall
mean square errors, and generally poor performance.
Redundancy can provide the ability to compensate for
these types of faults if the proper design is introduced
into the adaptive �lter structure. Unfortunately, this
form of redundancy can lead to poor convergence per-
formance for the adaptive �lter after the fault occur-
rence. This paper examines the use of a�ne projection
and row projection techniques to improve the conver-
gence performance of the fault tolerant adaptive �lter-
ing structure. Algorithms are developed for two cases:
fault knowledge and no fault knowledge incorporated
in the adaptive �ltering update. These algorithms are
introduced in this paper and simulations are presented
to illustrate the e�ectiveness of these approaches.

1. INTRODUCTION

Increasing concerns over the reliability of fast adap-
tive algorithms and their implementations has spawned
interest and research in the development of algorithms
which are capable of adapting to optimal or \nearly"
optimal solutions in the presence of faults. Adaptive
�lter coe�cients are made robust to faults by intro-
ducing redundant coe�cients. In order to compensate
for a single fault, a set of coe�cients may be made
fault-tolerant by adding a single additional adaptive
�lter coe�cient. To compensate for up to R faults, R
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additional coe�cients are added to the set of N coe�-
cients.

However, the inputs to the R coe�cients are di�er-
ent from the other N . They are typically composed of
the linear combination of the N delayed input samples.
In order to illustrate some of the possibilities, the out-
put of the adaptive �lter for the N -th order case with
no faults can be expanded:

y(n) =WH(n)
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where W (n) is a vector of adaptive �lter coe�cients
and X(n) is a vector of the input data. To incorporate
protection for one fault, the following modi�ed �ltering
structure may be used:

y(n) =WH(n)
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where the vector of adaptive �lter coe�cients now has
N + 1 coe�cients [3]. This approach may be gener-
alized further by writing the output of the adaptive
�lter as y(n) = WH(n)UHX(n). The matrix U in-
sures fault tolerance to R faults if all sets of any of the
N columns of the M � N dimensional matrix U are
linearly independent where M = N + R [3]. This set
may be constructed by taking the �rst N columns of
the M dimensional DFT or DCT matrices. Alterna-
tively, this can also be viewed as zero-padding the N
dimensional input vector to M values, and taking the
DFT or DCT, i.e. by taking the DFT of the vector
Xe(n) where Xe(n) is given by:

Xe(n) =
�
XT (n); 0; : : : ; 0

�T
(3)



Note that many other constructions are possible for the
matrix U [4].

2. RAPIDLY CONVERGING ADAPTIVE
FAULT TOLERANT ALGORITHMS

Post fault convergence rates for LMS-based strategies
for updating the �lter coe�cients will generally be poor
for highly correlated inputs. One possible solution to
this problem is to utilize a vector version of the nor-
malized LMS algorithm to update the fault tolerant
adaptive �ltering structure. This method is related to
the class of algorithms popularized as the \a�ne" pro-
jection methods [2],[5]. The authors [6],[7] have also
developed algorithms which fall into this class by gen-
eralizing a classical form of optimization known as row
projection. In general, each of these projection-based
adaptive strategies can be posed as solving the follow-
ing minimization problem:

min
W (n)

jjW (n)�W (n� 1)jj22

subject to D(n) = XH(n)UW (n)
(4)

where D(n) = XH(n)UW (n) represents the Lth order
vector of error conditions, E(n) = [e(n); : : : ; e(n�L+
1)], set to zero. The vector D(n) represents a vector of
desired inputs, and the matrixX(n) represents a N�L
matrix of the input signal. This problem can be solved
using a Lagrange multiplier method of optimization.
An update expression for the adaptive �lter coe�cients
may be developed as:

W (n) = W (n� 1)�UHX(n)[XH (n)UUHX(n)]�1

�[D(n)�XH(n)UW (n� 1)]: (5)

2.1. Fault Tolerant Adaptive Filtering Algorithms
(Faults Known) - Implementation I

The algorithm described by equation 5 does not rely
on knowledge of the exact fault locations. Conceivably,
there might be a fault detection mechanism designed
into the system [4]. Assuming that the overall goal of
the algorithm is to compensate for faults occuring in up
to R taps, the performance criterion of the vectorized
NLMS algorithmmay be re-stated to include the e�ects
of the R faults.

min
W (n)

jjW (n)�W (n� 1)jj22

subject to D(n) = XH(n)UW (n)

EHW (n) = C

(6)

where the matrix E is given by the following:

E = [ek1 ; : : : ; ekR ] (7)

and where ei is a vector with a one in the i'th position
and zeros elsewhere, and fk1; : : : kRg is an indexed set
of integers belonging to [0;M � 1] which de�nes the
location of the R failed taps.

If the faults can be identi�ed, the vectorized NLMS
or the accelerated row projection methods developed
by the authors in [6], [7] may be augmented directly to
solve this alternative system. The vector NLMS with
fault knowledge replacesD(n) andX(n) with ~D(n) and
~X(n), respectively where

~D(n) =

�
D(n)
C

�

~XH(n) =

�
XH(n)U
EH

�
(8)

The update of the adaptive coe�cients in the vector
NLMS case using fault knowledge becomes:

W (n) = W (n� 1)�
�
UHX(n) E

�

�

�
XH(n)UUHX(n) XHUE

EHUHX EHE

�
�1

�
�
D(n)�XH

e
(n)UW (n� 1)]

�
(9)

While this direct implementation is easy enough to vi-
sualize, it can be computationally expensive to imple-
ment. As an alternative, the conjugate gradient (CG)
algorithm can be used to solve the system AX = B

where A = ~X(n) ~XH(n), and B = ~X(n) ~D(n) similar
to the approach of Boray and Srinath [1]. A di�erent
implementation that directly incorporates the faults as
constraining conditions may be also developed. This
approach which solves the optimization problem stated
in equation 6 is developed in the next section.

Row projection methods may be used to express
the adaptive �ltering process as the solution of a con-
strained solution of a linear system. The linear system
associated with the adaptive �ltering process is the set
of zero error conditions, XH(n)W (n) = D(n), and the
fault knowledge, EHW (n) = C. The authors have pre-
scribed a number of methods to solve these types of
linear systems using data reusing, and accelerated data
reusing adaptive techniques [6],[7].

2.2. Fault Tolerant Adaptive Filtering Algorithms
(Faults Known) - Implementation II

To formulate a solution for the optimization problem
described in equation 6, the Lagrangemultiplier method
can be used. The following function can then be mini-
mized:

J(W (n); �1; �2) = kW (n)�W (n� 1)]k22 +

�H1 [D(n)�XH (n)UW (n)]

+�H2 [E
HW (n)� C] (10)



Following the general prescription of Lagrange multi-
plier optimization, the derivatives of equation 10 are
taken with respect to W (n), �1, and �2 and set equal
to zero.

�J(W (n); �1; �2)

�W (n)
= W (n)�W (n� 1)

+UHX(n)�1 +E�2 (11)

�J(W (n); �1; �2)

��1
= D(n)�XH(n)UW (n) (12)

�J(W (n); �1; �2)

��2
= EHW (n)� C (13)

Substituting equation 11 into equation 12 and equa-
tion 13 yields the following two equations:

D(n) = XH(n)U[W (n � 1)�UHX(n)�1 �E�2]

C = EH [W (n� 1)�UHX(n)�1 �E�2] (14)

Using the knowledge that the fault has occurred at the
previous instant, C � EHW (n � 1) = 0, and EHE =
I, expressions for the optimal values of the Lagrange
multipliers, ��1 and �

�

2 may be obtained as the following:

��1 = �[I� [XH(n)UUHX(n)]�1

�XH(n)UEEHUHX(n)]�1[XH (n)UUHX(n)]�1

�[D(n)�XH(n)UW (n� 1)] (15)

��2 = EHUHX(n)[I � [XH(n)UUHX(n)]�1

�XH(n)UEEHUHX(n)]�1

�[XH(n)UUHX(n)]�1

[D(n)�XH(n)UW (n � 1)] (16)

Using ��1 and ��2, the optimal update expression for
W (n) becomes:

W (n) = W (n� 1) + [I�EEH ]UHX(n)[I�

[XH (n)UUHX(n)]�1XH(n)UE

�EHUHX(n)]�1[XH(n)UUHX(n)]�1

�[D(n)�XH(n)UW (n� 1)] (17)

If UH is chosen as the �rst N columns of the M di-
mensional unitary DFT, and the data vectors are zero-
padded to enforce this choice, the update expression
becomes:

W (n) = W (n� 1) + [I� EEH ]UHXe(n)[I�

[XH(n)X(n)]�1XH

e
(n)UEEHUHXe(n)]

�1

�[XH(n)X(n)]�1[D(n)�XH

e (n)UW (n� 1)]

(18)

Further de�ning the projection matrices,PR(E) = EEH ,
and PN(EH ) = [I � EEH ], results in the following up-
date expression:

W (n) = W (n� 1) +PN(EH)U
HXe(n)[I�

[XH (n)X(n)]�1XH

e
(n)UPR(E)U

HXe(n)]
�1

�[XH(n)X(n)]�1[D(n)�XH

e (n)UW (n � 1)]

(19)

The update expression now appears similar to the up-
date expression for the algorithm with no fault knowl-
edge. The update in the coe�cients is projected away
from the span of the faulty coe�cients. Potentially,
this method might o�er some bene�t in terms of re-
duced computational complexity over the method in
equation 9, but it may also require a more complicated
implementation. While this expression is simpli�ed,
the resulting implementation can still be di�cult.

Potentially, the row projection methods developed
by the authors or the CG algorithm of Boray and Sri-
nath [1] o�ers the simplest level of understanding to the
system designer attempting to realize a fault tolerant
system.

3. EXPERIMENTAL EVALUATION

In order to determine if knowledge of the faults made
any di�erence in the performance of the adaptive �lter
convergence rate, the performance of the accelerated
row projection method developed in [6] in the presence
and absence of fault knowledge is examined. When
the fault is known, the accelerated data reusing algo-
rithms solve the optimization problem stated in equa-
tion 6. When the faults are unknown, the accelerated
data reusing algorithms solve the optimization prob-
lem associated with equation 4. This is equivalent to
holding the coe�cients constant during the update.

A simple set of system identi�cation experiments
were performed where stuck at value faults occurred.
The unknown system had eight taps and R was set to
2. This system could in theory compensate for up to
two faults. The results of accelerated row projection

algorithm where faults were both unknown and known
for white noise are displayed in Figures 1 and 2.

The data from these plots does not indicate a signif-
icant disparity for the case of white noise input. But,
the knowledge of faults does slightly improve the post-
fault convergence rate after the second fault. However,
it appears to lead to a slightly slower convergence rate
after the �rst fault.

The same experiment was repeated for the case
where the input signal was colored noise. The result-
ing mean square error plots in Figures 3 and 4 illustrate
the large disparity in the system that occurs when the
knowledge of the faults is completely unknown. For
this simple case, the post-fault convergence after the
second fault illustrates that knowledge of the fault can
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Figure 1: System Identi�cation, White Noise Input, No
Fault Knowledge
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Figure 2: System Identi�cation, White Noise Input,
Fault Knowledge

improve convergence behavior over the system where
no fault knowledge is assumed.

4. CONCLUDING REMARKS

The adaptive fault tolerant algorithms developed in
this paper can compensate for the presence of up to
R faults. It has been shown previously that fault toler-
ant algorithms can have their performance signi�cantly
degraded in the presence of colored or highly corre-
lated inputs. New algorithms were introduced which
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Figure 3: System Identi�cation, Colored Noise Input,
No Fault Knowledge
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Figure 4: System Identi�cation, Colored Noise Input,
Fault Knowledge

featured improved performance over earlier fault tol-
erant algorithms. In particular, this paper speci�cally
improved the performance of the quality of post-fault
convergence rates with or without fault knowledge.
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