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ABSTRACT

We have trained and tested a number of large neural
networks for the purpose of emission probability estima-
tion in large vocabulary continuous speech recognition. In
particular, the problem under test is the DARPA Broad-
cast News task. Our goal here was to determine the rela-
tionship between training time, word error rate, size of the
training set, and size of the neural network. In all cases, the
network architecture was quite simple, comprising a single
large hidden layer with an input window consisting of fea-
ture vectors from 9 frames around the current time, with a
single output for each of 54 phonetic categories. Thus far,
simultaneous increases to the size of the training set and the
neural network improve performance; in other words, more
data helps, as does the training of more parameters. We
continue to be surprised that such a simple system works
as well as it does for complex tasks. Given a limitation
in training time, however, there appears to be an optimal
ratio of training patterns to parameters of around 25:1 in
these circumstances. Additionally, doubling the training
data and system size appears to provide diminishing re-
turns of error rate reduction for the largest systems.

1. INTRODUCTION

For about 10 years, we and others have trained large neu-
ral networks to estimate posterior probabilities of context-
independent phonetic classes for use in speech recognition
systems based on Hidden Markov Models (HMMs) [7]. For
small tasks, moderate amounts of training data, and when
simple models were used, we consistently found that we
could provide competitive and often improved recognition
performance in comparison with systems that used more
standard architectures and training methods (e.g., Gaus-
sian mixtures trained with a Maximum Likelihood crite-
rion) [9]. However, for large tasks for which a great deal of
training data was available, we have had difficulty achieving
the performance of likelihood-based HMM systems. Some
of this difference is undoubtedly due to scientifically unin-
teresting factors, such as the resources required to correct
faulty transcription. We also have wondered whether some
of the observed difficulty might be a straightforward trade-
off between computation and performance. As we have
usually designed it, hybrid HMM/ANN training requires
the update of all network parameters in response to ev-

ery input frame. On the other hand, direct training of
state-conditional feature densities in HMM systems only re-
quires the update of parameters corresponding to the state
or states associated with each feature vector. Furthermore,
at least in principle, likelihood-based HMM systems can
always benefit from more acoustic data by improving the
estimates for ever-finer categories (e.g., from triphones to
quinphones), since with more data these rarer categories
will become more populated.

Of course, there are analogous procedures available for
connectionist systems; for instance, the CDNN described in
[1], with variants explored in [2] and [5], can yield density
estimates for context-dependent classes as a product of net-
work outputs. The ACID/HNN system of [3] goes even fur-
ther, resulting in an extensive set of polyphone probabilities
that can be used for a fully context-dependent system in the
spirit of the large HMMs. In experiments on Switchboard,
for instance, this latter system appears to be quite compa-
rable in performance to the best likelihood-based HMMs.
However, to achieve this result the simplicity of the large
single network is sacrificed, leaving us with the question:
can we extract greater recognition accuracy from an in-
crease in training data without complicating the structure?

In previous work, we typically did not incorporate large
amounts of training data (e.g., much more than 10 hours of
speech). We also did not have sufficient computational re-
sources to explore the simplest approach: namely, to keep
the simple architecture constant and merely increase the
size of the network for training on larger training sets. This
year, we developed a baseline recognition system for the
Broadcast News task, for which we had 74 hours of acoustic
data.! While using all of this data was preferable, systems
trained on subsets were good enough to generate the com-
parative results for this experiment. For the parts of the
experiment in which we used larger networks and larger
fractions of the data, the amount of computation would
have previously been prohibitive. However, we recently
completed the development of a multiprocessor machine in-
corporating VLSI developed in our group, and this permit-
ted trainings that required on the order of 10° arithmetic
operations for the larger cases.

1Components of a variant of this system are currently being
developed for the 1998 DARPA Hub 4 evaluation, in collabo-
ration with the connectionist groups at Cambridge University,
Sheffield University, and Faculté Polytechnique de Mons.



Given the availability of acoustic materials and compu-
tational resources, we decided to push our simple system to
its limit, and also to test it for a range of training set and
neural net sizes.

2. METHODS

The basic procedure was to train neural networks with
a range of sizes on acoustic training data from different
amounts of large vocabulary continuous speech. Each net-
work was then used in a hybrid HMM/ANN recognizer, and
was evaluated with word error rate on a large vocabulary
task using a 65K word lexicon.

2.1. Corpus

For these experiments, we used the Broadcast News corpus.
This is a collection of speech from American radio and tele-
vision news broadcasts, such as the National Public Radio
program All Things Consideredor Nightline, televised in the
U.S. on the ABC network. These shows comprise a whole
range of speaking conditions, from planned speech in stu-
dio environments to spontaneous speech in noisy field con-
ditions over telephone lines. The (possibly multi-sentence)
segments are divided into 7 different focus conditions repre-
senting different acoustic/speaking environments; the ma-
jority conditions are planned studio speech and spontaneous
studio speech.

2.2. System Architecture

As in many of our previous papers [7], the underlying statis-
tical model was an extremely simple HMM. For each of 54
phonetic categories, we had an HMM consisting of a strictly
left-to-right model with multiple states tied to a single dis-
tribution; multiple repeated states were used to establish
a minimum duration for each phone. Transition probabili-
ties were set to .5. The emission probabilities of the HMM
were scaled likelihoods estimated by dividing the network
outputs by the priors for each class. The network was a
Multi-Layer Perceptron (MLP) with a single sigmoidal hid-
den layer, whose size for these experiments was varied from
500 to 4000 by factors of two. For each choice of hidden
layer size, a training was done using %, %, %, and all of the
74 hours of acoustic training material that was available
to us for this study. Note that the largest training incor-
porated about 700,000 parameters and 16 million acoustic
frames. 54 outputs associated with the phonetic classes
were generated by softmax functions computed from the
weighted hidden unit outputs. For the main set of experi-
ments reported here, the input consisted of feature vectors
from the frame associated with the target label, as well as
from 4 vectors into the past and 4 into the future.

To generate the features used in these experiments, the
speech was filtered and downsampled to 8 kHz. PLP-12 fea-
tures [4], including the PLP gain term to give a 13-element
feature vector, were computed every 16 ms, and normal-
ized according to the mean and variance of each segment
in the training data. These segments were provided to us
by our colleagues in the Cambridge University connectionist
group, and roughly corresponded to an utterance or a group

of utterances by a single speaker. In practice a good seg-
mentation system (such as the one developed by the HTK
group at Cambridge) does not degrade performance over
that achieved by manually segmenting chunks associated
with a single signal source [11]. We used the Noway large
vocabulary decoder [8], and co-developed a large vocabu-
lary pronunciation lexicon with our partners at Cambridge
and Sheffield. The backoff trigram grammar from the Cam-
bridge BN 97 system was used, incorporating 7TM bigrams
and 24M trigrams. It had been trained using both text
sources (broadcast news and newswire texts) and broadcast
news acoustic transcripts.

2.3. Training Hardware and Software

Connectionist training of large networks is quite compu-
tationally demanding, as noted above. To aid in this task,
we developed a vector microprocessor described in [10], and
vectorized software that incorporated efficient assembler rou-
tines for this processor while providing a C++ structure
that permitted a moderate range of experimentation for our
trainings. The board-level system (called the Spert-II) also
includes 8 MB of fast (zero wait state) SRAM so that mem-
ory accesses are not a bottleneck for the neural computation
of large networks. Current high end PCs and moderate level
workstations are now fast enough to compete with this sys-
tem (when highly optimized software is used), but we have
also developed 2-processor and 4-processor systems which
are significantly faster for sufficiently large networks. Using
a commercial bus expansion chassis, these permit the con-
nection of four Spert-Ils to a single Sparc host. Although
the bus bandwidth is necessarily shared between the four
processors, accumulating error gradients over 16 to 32 pat-
terns permits a near linear speedup for the larger networks
trained in this study. The Spert-II boards can also be used
independently within the multiprocessor system for those
problems with smaller networks.

3. RESULTS
Training set size, hours
9.25 18.5 37 74
# Hidden units

500 42.8% | 41.0% | 40.2% | 39.2%
1000 41.8% | 38.8% | 36.5% | 36.9%
2000 40.4% | 37.2% | 35.6% | 34.4%
4000 40.3% | 37.4% | 33.9% | 33.7%

Table 1: Word Error Rate percentages for the overall hybrid
recognition system incorporating classifier networks with
different-sized hidden layers, trained on varying amounts of
acoustic data. In each case, the input consisted of 9 vectors
of length 13, and the output layer was 54 units. The number
of parameters for each layered network was ((9x13)+54)x(#
Hidden units) weights, plus (# Hidden units +54) biases.

Table 1 details the effect of varying the size of the training
set and the number of hidden layer units on the error rate
of the overall hybrid system, all other parameters being
held constant. These results are plotted as a 3-dimensional
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Figure 1: Surface plot of system word error rate as a func-
tion of the amount of training data and the hidden layer
size.

surface, i.e. error rate as a function of training set and
hidden layer size, in Figure 1. The most obvious trend is
that increasing either parameter will improve the overall
system performance in virtually every condition.

There are some caveats to be borne in mind when con-
sidering the word error rate figures. These results were
obtained on a separate test set of 32 minutes containing
5938 words; by our reckoning, to be significant at the 5%
level, error rates must differ by at least 1.5%.2 There is
additional variability introduced by the randomization of
pattern presentation used in the network training.

Training followed a standard ‘simulated annealing’ pro-
cess with repeated passes or ‘epochs’ over the entire training
set; after initial stabilization, the learning rate was halved
on each successive iteration until the frame classification ac-
curacy on a separate cross-validation set improved by less
than 0.5%. The interaction between this criterion and other
variables meant that the different networks trained for dif-
ferent numbers of epochs, between 7 and 10.

The acoustic data for these experiments was limited to 4
kHz bandwidth before feature extraction.> While this pro-
cessing succeeded in its intention of improving the relative
performance on the telephone-channel speech which forms
some 15% of the corpus, it appears to increase the error
for the remaining full-bandwidth data. Finally, the decoder
pruning for these tests was chosen to be fairly aggressive,
giving a typical recognition speed of about 2x real-time;
slower but more exhaustive decoding would yield a relative

2This test set, used internally within our collaboration with
Cambridge and Sheffield, is a subset of the BN 97 evaluation set.
Previous experience at Cambridge suggests that this subset is
slightly “harder” than the larger set, typically by about a factor
of 10% in relative error.

3This bandlimiting was done for its complementarity with the
Cambridge system, with whom we would be merging models; in
practice the overall loss in performance due to this bandwidth
reduction appeared to be minor.
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Figure 2: Slices through the surface of the previous figure,
showing the variation of error rate with the ratio of training
patterns to network weights for a fixed number of connec-
tion updates per training epoch.

error rate improvement of 5-10%.

Figure 2 shows a succession of slices through the error-
rate surface, taken in planes parallel to the view plane. Each
slice corresponds to a constant product of training set size
and hidden layer size, or equivalently the number of con-
nection updates per complete training epoch. Each line is
tagged with this number, with the maximum value of 11.4
TCUP (11.4 x 10'? updates) for the case of the 4000 hidden
units by (117454) weights per unit by 16.7 million training
patterns. These slices confirm the central ‘dip’ visible in
the error rate surface, indicating that for a given amount of
training computation, there is an optimal ratio of training
frames per network weight in the range 10 to 40.

4. DISCUSSION

Our primary observation, that improvements are almost al-
ways obtained by increasing either or both of the amount of
training data or the number of network parameters, is not
surprising. It is encouraging, however, that these increases
continue to be significant out to the practical limits of our
current resources, at least when considering simultaneous
increases of training set size and network size (i.e. the lead-
ing diagonal of Table 1). In fact, the 1998 Broadcast News
evaluations provide a second nominal 100 hour training set,
8o we are now planning to train an 8000 hidden unit net on
150 hours of data (using 28 features per frame). Even using
our custom multi-processor hardware, this training will re-
quire over three weeks of computation. Were we to use our
300 MHz Sun Ultra-30, we project that this training would
take several months to complete.

Given our earlier experience with training networks for
speech recognition, our test points for this study straddled
a minimum in the patterns-per-parameter dimension. The



size of the available training set and the practical limits on
network size coincided at about this ratio, using PLP-12 as
the input feature. As part of our Broadcast News effort, we
are also employing a different set of 28 features based on
the modulation-spectrum, using a modified form of the ap-
proach described in [6]. While we have too few results to see
if this ratio changes when evaluated over a different-sized
vector of different features, it is clear from the experiments
we have done that we do continue to derive improvements
from increasing the network and training size.

Finally, although the error rate does continue to fall as
we move to larger data sets and more parameters, exami-
nation of the leading diagonal for Table 1 shows that there
does appear to be a diminishing of returns for this strategy.
The error reduction for each doubling of both training set
size and parameters goes from 9.3% for the first doubling
down to 5.3% for the last. It may be that we are nearing
the limits of potential improvements of this system without
incorporating more structure. In fact, as previously noted,
we are currently engaged in developing a joint system with
our European partners in which we are merging estimators
that often lead to different errors. Ultimately, this is likely
to be the way in which we will incorporate an even larger
number of parameters for improved recognition accuracy.

5. CONCLUSION

As stated in the title, it appears that over the range of pa-
rameters we investigated, size does matter, and the most ob-
vious route to improving speech recognition, that of increas-
ing the amount of training data and the number of classi-
fier parameters, is still a viable course for the hybrid con-
nectionist architecture. While our absolute system perfor-
mance 1s not as good as some other more complex systems,
it is notable how much can be achieved by this baseline.
Routine refinements such as context-dependence, gender-
dependence, feature adaptation (e.g. vocal-tract length nor-
malization) and higher-order grammars can all be employed
to improve performance. Also, simple model merging tech-
niques using multiple hybrid HMM/ANN estimators form
part of the overall Broadcast News evaluation effort we are
conducting in collaboration with Cambridge University and
our other partners.
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