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ABSTRACT

This paper deals with the application to denoising of a
very simple but e�ective \local" spatially adaptive statis-
tical model for the wavelet image representation that was
recently introduced successfully in a compression context
[1]. Motivated by the intimate connection between com-
pression and denoising [2, 3, 4], this paper explores the
signi�cant role of the underlying statistical wavelet image
model. The model used here, a simpli�ed version of the one
in [1], is that of a mixture process of independent compo-
nent �elds having a zero-mean Gaussian distribution with
unknown variances �2s that are slowly spatially-varying with
the wavelet coe�cient location s. We propose to use this
model for image denoising by initially estimating the un-
derlying variance �eld using a Maximum Likelihood (ML)
rule and then applying the Minimum Mean Squared error
(MMSE) estimation procedure. In the process of variance
estimation, we assume that the variance �eld is \locally"
smooth to allow its reliable estimation, and use an adaptive
window-based estimation procedure to capture the e�ect of
edges. Despite the simplicity of our method, our denoising
results compare favorably with the best reported results in
the recent denoising literature.

1. INTRODUCTION AND MOTIVATION

Accurate image modeling, whether done explicitly or im-
plicitly, is a critical component to the e�ectiveness of almost
all image processing tasks. For statistical-based approaches
to image processing, the choice of an accurate statistical im-
age model is critical. In [1], a simple yet e�ective statistical-
based spatially adaptive wavelet image model was used in
de�ning a compression algorithm (the so-called Estimation-
Quantization (EQ) coder) whose performance ranks among
the best in the image coding literature. In this work, we
apply a simpler version of that model to the task of image
denoising, motivated by the intimate connection between
compression and denoising that has been established re-
cently [2, 3, 4], which we will discuss shortly. Here, we
use a simpli�ed version of the statistical image model of [1]
in formulating a simple method of denoising that attains
state-of-the-art performance on standard test images. The
key ingredient is the use of spatial adaptivity in a very sim-
ple statistical framework.

While we consider the speci�c case of additive white
Gaussian noise (AWGN) in this work, extensions to more

general noise models are possible. In general, the denoising
process involves the task of removing most of the artifacts
due to noise while leaving the most important image com-
ponents nearly undistorted. We choose the mean-squared-
error (MSE) as the performance measure.

To motivate our approach, we discuss the relationship
between image compression and image denoising. Histori-
cally, the problem of image compression has been the area of
larger mass appeal and research activity. Partly as a result
of this, the state-of-the-art in the image compression �eld
seems to be the more mature of the two, especially with
regard to the use of sophisticated and more realistic \real
world" image models. On the other hand, the underlying
relationship between the denoising and compression prob-
lems implies that the modeling maturity inherent in the
successful state-of-the-art image coding algorithms may be
e�ectively applied for the denoising problem as well. In fact,
lossy data compression was proposed for denoising in [2].
The intuition behind this approach is that the \typically
correlated signal is compressible but uncorrelated noise is
not." This principle, in a more rigorous form, is the basis
for so-called complexity regularized denoising algorithms.
Indeed, many of the recently proposed promising statisti-
cal denoising methods owe their improved performance to
the more powerful image models that they derive inspired
by state-of-the-art image compression algorithms. In the
following, we describe some of the statistical image models
in compression, starting from the most simple one, and we
show how these models can be applied for image denoising.

A powerful class of image compression algorithms is
based on the Discrete Wavelet transform (DWT) which ef-
fectively performs energy compaction for typical images by
packing most of the image information into a few transform
coe�cients. The transform coe�cients can be modeled as
i.i.d. random variables with Generalized Gaussian distri-
bution (�rst proposed in [5]) and this simple model can be
used for designing the source coder. Similar models are used
in several abovementioned complexity regularized denois-
ing algorithms [6, 3]. These algorithms e�ectively perform
global thresholding of wavelet coe�cients, introduced in [7],
by retaining only large coe�cients and setting the rest to
zero. Though wavelet thresholding methods have beautiful
theoretical properties for certain classes of statistical mod-
els, they have not been very e�ective on \real-life" images
primarily due to the mismatch in the modeling assumption.



Speci�cally, the lack of spatial adaptivity signi�cantly re-
duces the performance of the discussed algorithms [6, 3, 7].
Our proposed model overcomes this disadvantage and, as a
result, achieves a much better performance. It is interesting
to note a similar evolution in the performance of wavelet im-
age coders due to the spatially adaptive component in the
subband image models.

That is, more sophisticated models for image compres-
sion recognize that there exist signi�cant spatial depen-
dencies in the transform coe�cients and try to describe
them using various data structures such as zero-trees in-
troduced in [8]. The performance of the zero-tree based
wavelet coders is currently among the best in image com-
pression �eld. This inspired the proposal of similar methods
in the image denoising application. In [4], a Hidden Markov
model based on a wavelet tree was proposed to perform de-
noising. This model represents a compromise between an
i.i.d. assumption and an overly general 2-D random process
model by trying to capture most of the spatial dependencies
while maintaining reasonable complexity. In [4], however,
no real-life image results were presented. Though zero-tree
based coders o�er very good performance in image com-
pression, attempts to translate this performance into sim-
ple algorithms for image denoising have not yet been very
successful.

An alternative approach has been introduced recently,
which o�ers excellent compression performance, while us-
ing a very simple and e�cient local model [1]. In this work,
we propose to modify the model of [1] for the purpose of
image denoising and we demonstrate the promise of this ap-
proach. In [9] a similar spatially adaptive model for wavelet
image coe�cients was used to perform image denoising via
wavelet thresholding. Within the framework of [9], each
wavelet coe�cient is modeled as a random variable with
a Generalized Gaussian (GG) distribution having unknown
parameters. Parameter estimation is carried out by context
modeling. Our work, while being similar in approach (it em-
ploys the spatially adaptive model), di�ers from [9] in the
statistical methods used for denoising - we perform MMSE
estimation rather than coe�cient thresholding. The main
message of the paper is to introduce a simple stochastic
model for image wavelet coe�cients and to show its excel-
lent performance in the denoising of real-life images.

2. PROBLEM FORMULATION AND

SOLUTION

2.1. Stochastic model for wavelet coe�cients

In our model, we assume that there exists a determinis-
tic unknown spatially varying variance �eld. Given this
�eld, the wavelet coe�cients are modeled to be indepen-
dent Gaussian random variables having zero mean and the
variance given by the underlying �eld. We assume that
the variance �eld is smoothly changing. Hence we approxi-
mate the wavelet coe�cients as \locally i.i.d.". Within the
framework considered in this paper, the image pixels are
corrupted by additive white Gaussian noise (AWGN) un-
correlated with the data as illustrated in Fig. 1. 1 The

1Since in this work we use an orthogonal wavelet decomposi-
tion, AWGN in spatial domain preserves its statistical properties
in the frequency domain.

denoising problem is to retrieve the original image coe�-
cients as well as possible from the noisy observations. Here,
we assume that we know the noise variance �2n. In Fig. 1,
X(k) represents the wavelet coe�cients of a \clean" image
corrupted by additive i.i.d. Gaussian noise samples n(k) to
produce the observed wavelet coe�cients of a noisy image
Y (k). In Fig. 1, we explicitly show the image coe�cients
X(k) as being obtained from the multiplication of the out-
comes of an i.i.d. Gaussian source by samples �(k) from
an unknown variance �eld. The model of the wavelet co-
e�cients as being locally i.i.d. Generalized Gaussian was
proposed and successfully used in [1] in the context of im-
age compression. There, the variance estimate for the cur-
rent coe�cient was predicted from a quantized casual neigh-
borhood, and the appropriate quantizer and entropy coder
were matched to this variance estimate. Similarly, the al-
gorithm proposed in this work is based on the underlying
variance �eld being reasonably smooth to allow its reliable
estimation from the local neighborhood of each wavelet co-
e�cient. Speci�cally, we perform the ML estimation of the
variance of each coe�cient separately, using the observed
noisy data in its neighborhood. This estimate is then used
in the MMSE estimation (instead of the \true" variance) of
the original wavelet coe�cient X(k). Both of these steps
are outlined in the next subsections starting from the de-
noising part �rst and illustrated in Fig. 2.
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Figure 1: Model for noisy wavelet coe�cients data.

X(k) represents wavelet coe�cients of the \clean"
image, each drawn independently from a Gaussian

source with zero mean and variance �2(k). X(k)'s
are corrupted by AWGN samples n(k) to produce

the observed data Y (k).
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Figure 2: Block-diagram of the denoising algorithm.

For each observed noisy coe�cient Y (k) we form the

ML estimate �̂2(k) of the the variance of the corre-
sponding image wavelet coe�cient X(k) using its
local neighborhood. Then, we �nd the MMSE esti-

mate X̂(k) of the original image wavelet coe�cient.

2.2. Denoising algorithm

Our proposed denoising algorithm is based on the Minimum
Mean Squared error (MMSE) estimation procedure. Under
the assumptions of independence and Gaussianity, the op-
timal (in the MSE sense) predictor for the clean data X(k)



is linear and is given by:

X̂(k) =
�2(k)

�2(k) + �n2
Y (k)

where Y (k) is the observed data, �2(k) is the variance of
X(k) and �n

2 is the variance of the AWGN samples. How-
ever, we cannot use the true signal variance �2(k) in esti-
mation since it is unknown. Instead, we propose to use the
following form of the linear predictor:

X̂(k) =
�̂2(k)

�̂2(k) + �n2
Y (k) (1)

where �̂2(k) is the estimated variance for the k-th data sam-
ple X(k).

The performance of the proposed predictor (1) is depen-
dent, to a high extent, on the performance of the estimator
of the underlying variance �eld �̂2(k). Generally, this re-
lation is unknown and complicated; in the interest of sim-
plicity, we use the guiding principle that a better estimator
for the data variance yields a better estimate for the data
as well.

2.3. Estimation of the underlying variance �eld

The estimation of the underlying variance �eld is the crux
of the proposed denoising algorithm. For each data point
(wavelet coe�cient) an estimate of its variance is formed
based on the local neighborhood of the data point. Under
the smoothness assumption of the variance �eld, the trans-
form coe�cients around X(k) can be used to estimate �(k).
It is intuitively clear that the estimate of �(k) has to be de-
pendent on the local data statistics. To formalize this idea,
we consider the following setting. Suppose we are given a
class of M di�erent variance estimators �2

m(k), only one
of which will be used for each location k. To decide which
estimator to use optimally, one needs to choose the estima-
tor which minimizes the MSE EjX̂(k)�X(k)j2 where X̂(k)
is obtained from (1) with �̂2(k) = �2

m(k). Unfortunately,
this is an intractable problem, hence we propose to choose
the estimator which minimizes the MSE in the estimation
of the coe�cient variance, i.e., we can select :

�̂(k) = argmin
�m

E[(�(k)��m(k))
2]; (2)

which is easily shown to be equivalent to

�̂(k) = argmin
�m

f(E[�m(k)]� �(k))2 + V ar[�m(k)]g: (3)

The last equation is simply a bias-variance MSE decompo-
sition.

In this work we consider only the speci�c class of window-
type estimators of the variance of X(k) where each data
sample in the window around X(k) contributes equivalently
to the estimation. In general, to choose the estimator both
the size and the shape of the neighborhood region should
be determined. Obviously, given that the data samples are
locally i.i.d., the bigger the size of the region to estimate
�(k) is, the more reliable this estimate is. However, the lo-
cally i.i.d. assumption becomes inaccurate as the size of the
neighborhood grows, and the quality of variance estimation
may decrease, because of the possible inclusion of \wrong"
data points into estimation. The outlined trade-o� suggests
the existence of an \optimal" neighborhood region for the

variance estimation for each data point. This region is data
dependent and has to be determined. In the following, we
present our approach to attack the problem of estimation of
the variance �eld and the simulation results which validate
the e�ciency of our proposed methodology.

We consider M di�erent local neighborhoods Nkm in
order to estimate the variance �2(k) for the transform coef-
�cient X(k), where m 2 f1; 2; : : : ;Mg. We model the sta-
tistical properties of the transform coe�cients within the
set Nkm as being stationary i.i.d. Thus, the maximum-
likelihood variance estimator for X(k) using the neighbor-
hood Nkm is:

�2

m(k) = max

0
@0;

X
l2Nkm

Y
2(l) � �

2

n

1
A : (4)

In our denoising algorithm, square-shaped windows of dif-
ferent sizes around the data has been used to estimate �2(k)
for simplicity. Due to a combination of the intractability of
the minimization in (3) because of the presence of the �rst
term as well as the dominance of the second term (which
we verify in Table 1), we propose to modify the criterion (3)
to choose the local estimator by considering only the vari-
ance term in the minimization. We found experimentally
that this term dominates the estimator error therefore our
criterion in simulations was:

�̂
�(k) = argmin

�m

V ar[�m(k)]: (5)

In order to estimate the variance of the estimator, we use a
simple technique, called the Bootstrap Method.

The Bootstrap is a practical technique for validating the
accuracy of a parameter estimator and obtaining informa-
tion about the distribution of the estimator. While other
statistical methods having better asymptotical properties
exist, they usually require a large number of samples for
an e�cient performance, which is clearly not the case in
our situation. On the other hand, the Bootstrap provides
a simple and e�cient alternative under the constraint of a
limited sample size.

To understand how the Bootstrap works in our case,
suppose the estimator �m(k) is obtained using the samples
in the set Nkm. Let the corresponding data size be jNkmj.
The �rst step is the \Resampling" step, where a random
sample of size jNkmj is drawn from the set Nkm with re-
placement. The second step is the calculation of the boot-
strap estimate using this random sample (i.e., simply using
(4) on this random sample). These two steps are repeated
a large number of times. The outcomes of the second step
form an approximation to the statistical distribution of the
estimator �m(k) from which the standard deviation of the
estimator can be approximated. For more information on
Bootstrap, the reader is referred to [10].

3. RESULTS AND DISCUSSION

We tested our algorithm on a number of images, here, we
only report the results for lena and barbara. We gener-
ated i.i.d. Gaussian noise at four di�erent values of the
noise variance, �2n. We used orthogonal wavelet transform
with �ve levels of decomposition and Daubechies' length{
8 wavelet. Square{shaped windows of sizes 3 � 3, 5 � 5,
7 � 7 and 9 � 9 around the data point were employed to



�nd di�erent estimates for �2(k). For each transform coef-
�cient, one of these estimators is favored as a result of our
algorithm. A typical estimator assignment map is shown
in Figure 3. Note that around edges, small size windows
are selected because of the fact that the variations in the
image data are considerable in these regions. On the other
hand, in smoother background regions, windows with larger
sizes are preferred. Five di�erent methods have been com-

9x9

3x3

5x5

7x7

Figure 3: The estimator assignment map for all of

the subbands of the lena image when �n = 15. Note
how smaller window sizes for predictors are favored

around edges, while larger window sizes for predic-

tors are preferred in smooth background regions.

pared, and the PSNR results are shown in Table (1). The
�rst method is the hard{thresholding of wavelet coe�cients
using a constant threshold for all subbands, calculated ac-
cording to [7]. The second method is the image denoising
algorithm of MATLAB, which is invoked by wiener2. The
third method is based on a framework of spatially adap-
tive wavelet thresholding, which is a recent work [9]. We
included only the results from [9] which were obtained by
using an orthogonal wavelet transform since this is equiva-
lent to our setup. However, it has been reported in [9] that
improvements of 1 � 1:5 dB can be obtained by using the
overcomplete expansion. We plan to extend our method to
the non-subsampled wavelet transform domain in our future
research.

For each image we also presented the results obtained
from \optimal averaged estimator assignment maps". These
maps represent the empirical upper bound on PSNR per-
formance for the class of estimators that we use. Note that
the performance of our method is approaching the best per-
formance possible for this class of estimators, which further
justi�es our estimator selection criterion (5). In this work,
a very limited class of estimators was used. We believe
that if a richer class of estimators is allowed, the perfor-
mance would improve substantially. This is the subject of
our ongoing research.
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