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ABSTRACT effort to regularize the estimated field, TLS tends to give
noisier estimates [7, 10] when the i.i.d. noise model does
not hold or when highly inconsistent systems of equations

solving over-determined systems of optical flow equations. are encountered. In [4], rank-deficient cases are detected by

Least squares (LS) estimation is usually used to solve thes&OMmparing intensity gradient directions in a neighborhood

systems even though the underlying noise does not conforrrf’md treating each of them differently, while in [9] a reliabil-

to the model implied by LS estimation. To ameliorate this !ty measure from the singular value decompositioftif)]

problem, work has been done using the total least squareéS used to regularize the estimated field.

(TLS) method instead. However, the noise model presumed  Although the regularized TLS approach gives more ac-
by TLS is again different from the noise present in the sys- curate estimates than the LS technique, improvements can
tem of optical flow equations. A proper way to solve the be expected if a correlated noise model is used [10, 11, 12].
system of optical flow equation is the constrained total leastAn extension to TLS which takes into account the noise
squares (CTLS) technique. The derivation and analysis ofcorrelation in[A[b] is the constrained total least squares
the CTLS technique for optical flow estimation is presented (CTLS) method. CTLS has been successfully used to solve

in this paper. It is shown that CTLS outperforms TLS and image restoration problems [10, 11]. In [7], an error-in-
LS optical flow estimation. variable (EIV) formulation of optical flow estimation is pre-

sented. This approach can be shown to be equivalent to the
CTLS approach [13]. In this paper, the CTLS approach is
used to solve the optical flow estimation problem.

There are many methods for optical flow estimation for a ~ The paper is organized as follows. In section 2, opti-
single channel image sequence. For techniques based ofal flow estimation using a first order differential constraint
the differential optical flow equation, a locally constant flow S introduced. Section 3 derives the nonlinear cost func-
model is usually used to allow the construction of an over- tion for the CTLS approach. Section 4 presents a perfor-
determined system of constraint equatiaas,= b, where mance analysis that compares different techniques with the
Ais composed of spatial intensity derivatives &rmntains ~ Cramer-Rao lower bound. Experiments and conclusions are
the temporal intensity derivatives. An estimate of the opti- Presented in sections 5 and 6, respectively.

cal flow vectorx is then obtained using least squares (LS)

estimation [1]. LS fit produces robust, but not very accurate

estimates, since the LS model does not account for the noise 2. PROBLEM FORMULATION

in the spatial derivative matri®.

Total least squares (TLS) is a technique which takes into The most commonly used constraint in optical flow estima-
account the noise i [2, 3]. Some work has been done on tion is the optical flow equation:
optical flow estimation using TLS techniques [4]-[9]. In [4],

TLS is used to replace LS directly for optical flow fitting, OE,dx OE;dy OFE;
assuming a locally smooth flow field model. Without extra Oz dt | 9y dt | ot

Many optical flow estimation techniques are based on the
differential optical flow equation. These algorithms involve

1. INTRODUCTION
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where E;(-) is the image intensity at timg 0E;/dx and
OE,; /0y are the spatial derivatives of the image intensity
functionE;(-), 0E; /0t is the temporal derivative of the im-
age intensity function, anftz/dt, dy/dt)T is the optical
flow vector. Least squares (LS) estimation is often used to
compute the optical flow. With a squa{én x /m esti-
mation window, the resulting problem is the solution of the

following over-determined system of equations
Am><2 X = bm><1

()

where

( 2 (s1) Ge(s1) ) (—8;}(&))
A= andb = ,
Gt (sm) Gt (sm) — 22 (sp)

with x = (u, U)T being the optical flow vector at image po-
sitionss; = (z,y;)7,i = 1,...,m. If neither A norb con-
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Figure 1: Left: the neighborhood structure for derivative
estimation. Right: pixels used for optical flow estimation at
positions,.
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To apply this technique to optical flow estimation, we must
define the noise vecterand derive the coloring matrik(x)
according to the noise model in the matriceandb.

The spatio-temporal derivatived’ (s;), 22+(s;), and

oy
8£f (s;) are usually estimated using finite difference equa-

tions. Without loss of generality and for ease of presen-
tation, L(x) is derived in the following paragraph using a

tain noise, Eq. (2) should be a consistent system and havsimple two-point backward difference equation. Given the

an exact solution. However, in optical flow estimatiehis
composed of the spatial gradients, which are estimated us
ing numerical differentiation of the noisy image data. Better
performance can be expected if the noiseliand the fact

that correlation exists between gradient estimates of neigh-

boring pixels is taken into account [12].

3. CONSTRAINED TOTAL LEAST SQUARES FOR
OPTICAL FLOW ESTIMATION

Let A andb the noisy matrices for the system of optical
flow equations as defined in Eq. (2), aAdi andAb be the
perturbation matrices that cancel out the noiseliandb,
respectively. That s,

(A+ AA)Xx =b+ Ab,
or equivalently,

AX + (AAX — Ab) = b. 3)

If the noise inA A andAb can be modeled as the multipli-
cation of a coloring matribx(x) with a white noise vector

€, we can reformulate the estimation problem using CTLS.
That is,

AAX — Ab = L(X) - «. (4)
The problem then takes the form:
min ||e]|2, subjectto Ax + L(x) -e = b. (5)

Solving for € from the constraint in Eq. (5) leads to
e = LT(x)(b— Ax), where L*(x) denotes the Moore-
Penrose pseudo inverse bfx). The minimization ofje||-
is equivalent to the minimization ef . The cost function
can then be defined as follows:

JX) = (b— AT LY ()TLY(X) (b — AX).  (6)

neighborhood structure shown in Figure 1, the image inten-

sity derivatives at pixel positios, can be calculated using

the following equations:

%(Sa) = Ei(s.) — Ey()
@t(sa) = Ei(sa) — Ei(s:) (7)
25 (S2) = Eu(si) — B (sa)

If the image intensities are corrupted by i.i.d. noise, the
entries inA andb would be corrupted by correlated noise.
If a 3-point estimation window (Figure 1) and Eq. (7) are
used,A andb can be written as:

Ei(s.) — Ei(s.) Ei(s.) — Ei(sy)
A = Ei(s) — Ei(Sa)  Ei(s) — Fy(se) | and
Ei(s)) — Er(ss)  Et(Sa) — Ee(se)
Ei(s:) — Ep-1(s:)
b = —|E(s) - Ei—i(s) | - (8)
Et(sa) - Et—l(sa)

We assume that the image intensities are corrupted by i.i.d.
noise, i.e.

Ey(s;

Ei (s

Et(sj)+6j7 j:aab,cadaeaf and
Etfl(sk) +€;m k= a,ba ¢, (9)
whereFE; () is the true image intensity attinieande,, ..., €

ande,, €}, €. are i.i.d. zero mean noise with variange Let
x = (uv)T, and

)
)

€= (eq € €5 € € €, €. € €, )T.
We can defind.(x) as
0 —v —u u+v+1
Lx)=| —v —u 0 0 (10)
0 0 0 —u



0 0 -1 0 0
u+v+1 0 0 -1 0 O

—v u+v+1 0 0o -1 39

SinceL(x) is a full rank matrix with more columns than
rows, Lt(x) = L(x)T (L(x)L(x)T)_l. The noise covari-
ance matrix2(x) can be computed as

2 2 2
0y 03 03
B(X) = (L+(X)TL+(X))’1 =| o o? o? |o? Figure 2: A frame from a simulated image sequence.
3 2 2
03 03 O3
(11) Cramer Rao Lower Bound
where 1.8y, ‘
16} . ~— CRLB|
of = v+ul+(w+v+1)2+1 . v--v CTLS
LN e--o L |
0‘% =  uv 1.4 . S
o2 = —wvlu+v+1) 1.2} N ]
o7 = —u(ut+v+1). S 1p i .
8 . NS
The minimization of/(x) in Eq. (6) with respect t& results gO8r i
in the CTLS estimate of the optical flow at pixel positi®n 0.6- N Sy 1
This method can be generalized for larger window sizes and 0.4l " |
for different finite difference equations. ' ) )

4. PERFORMANCE BOUND

5 10 ) 15
estimation window size (noise ¢° = 16)

It is very insightful to compare the variance of an unbiased

estimator to the theoretical lower bound of the variance of Figure 3: Variance of estimates as a function of window size
the estimator based on the same noise model. The most

widely quoted variance bound is probably the Cramer-Rao

lower bound (CRLB). Assuming a general Gaussian noise 5. EXPERIMENT

model for the observation vector, i.e.,

In this section simulations are conducted first to show the

Ax = b, x=(u,v,)" . .
’ v accuracy of LS and CTLS methods as a function of the esti-

p(b|x) = N(Ax,E(x)), mation window size. In the simulation, a sequence of a sin-
] ] . ] gle object undergoing uniform motion is synthesized. The
the CRLB is determined by the following equation simulated sequence is generated by translatin@Héex

256-pixel image shown in Figure 2 to simulate a 2-pixel
motion in the horizontal direction. There is no motion in
the vertical direction. The image sequence is corrupted by
a zero mean white Gaussian noise with variante= 16.

The optical flow estimation is performed on 64 pixel sites in
the center of the images. The variances of the estimates are

var(z;) > [I_l(x)] (12)

i’
wherez; is theith component of the unknown vectoand,
I(x) is the Fisher information matrix, whosg, j)th ele-
ments is given by

82 log p(b|X) then averaged over these pixel sites.
(T3]3 -k {W} Figure 3 shows the estimator variance versus the esti-
T o mation window size. The y-axis is the sum of variances of
- {8‘4)(} n(x)~! [%] the optical flow estimateg ando. From this figure, one can
Ow; Ox; see that CTLS is less accurate when the estimation window
1 _,0%2(X _,0%2(X size is small. This is probably because the CTLS technique
+ 5” [E(X) ' aéi)z(x) ' a;j)} (13) needs a large number of observations to capture the noise

statistics. As the number of observations gets larger, the es-
with ¢r [A] the trace of matrix A. For the details of the com- timates from CTLS become more accurate and eventually,

putation of%‘g, please refer to [13]. CTLS out-performs LS.
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