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ABSTRACT

Many optical flow estimation techniques are based on the
differential optical flow equation. These algorithms involve
solving over-determined systems of optical flow equations.
Least squares (LS) estimation is usually used to solve these
systems even though the underlying noise does not conform
to the model implied by LS estimation. To ameliorate this
problem, work has been done using the total least squares
(TLS) method instead. However, the noise model presumed
by TLS is again different from the noise present in the sys-
tem of optical flow equations. A proper way to solve the
system of optical flow equation is the constrained total least
squares (CTLS) technique. The derivation and analysis of
the CTLS technique for optical flow estimation is presented
in this paper. It is shown that CTLS outperforms TLS and
LS optical flow estimation.

1. INTRODUCTION

There are many methods for optical flow estimation for a
single channel image sequence. For techniques based on
the differential optical flow equation, a locally constant flow
model is usually used to allow the construction of an over-
determined system of constraint equations,Ax = b, where
A is composed of spatial intensity derivatives andb contains
the temporal intensity derivatives. An estimate of the opti-
cal flow vectorx is then obtained using least squares (LS)
estimation [1]. LS fit produces robust, but not very accurate
estimates, since the LS model does not account for the noise
in the spatial derivative matrixA.

Total least squares (TLS) is a technique which takes into
account the noise inA [2, 3]. Some work has been done on
optical flow estimation using TLS techniques [4]-[9]. In [4],
TLS is used to replace LS directly for optical flow fitting,
assuming a locally smooth flow field model. Without extra

effort to regularize the estimated field, TLS tends to give
noisier estimates [7, 10] when the i.i.d. noise model does
not hold or when highly inconsistent systems of equations
are encountered. In [4], rank-deficient cases are detected by
comparing intensity gradient directions in a neighborhood
and treating each of them differently, while in [9] a reliabil-
ity measure from the singular value decomposition of[Ajb]
is used to regularize the estimated field.

Although the regularized TLS approach gives more ac-
curate estimates than the LS technique, improvements can
be expected if a correlated noise model is used [10, 11, 12].
An extension to TLS which takes into account the noise
correlation in [Ajb] is the constrained total least squares
(CTLS) method. CTLS has been successfully used to solve
image restoration problems [10, 11]. In [7], an error-in-
variable (EIV) formulation of optical flow estimation is pre-
sented. This approach can be shown to be equivalent to the
CTLS approach [13]. In this paper, the CTLS approach is
used to solve the optical flow estimation problem.

The paper is organized as follows. In section 2, opti-
cal flow estimation using a first order differential constraint
is introduced. Section 3 derives the nonlinear cost func-
tion for the CTLS approach. Section 4 presents a perfor-
mance analysis that compares different techniques with the
Cramer-Rao lower bound. Experiments and conclusions are
presented in sections 5 and 6, respectively.

2. PROBLEM FORMULATION

The most commonly used constraint in optical flow estima-
tion is the optical flow equation:
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whereEt(�) is the image intensity at timet, @Et=@x and
@Et=@y are the spatial derivatives of the image intensity
functionEt(�), @Et=@t is the temporal derivative of the im-
age intensity function, and(dx=dt; dy=dt)T is the optical
flow vector. Least squares (LS) estimation is often used to
compute the optical flow. With a square
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m esti-
mation window, the resulting problem is the solution of the
following over-determined system of equations
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with x = (u; v)
T being the optical flow vector at image po-

sitionssi = (xi; yi)
T ; i = 1; :::;m. If neitherA nor b con-

tain noise, Eq. (2) should be a consistent system and have
an exact solution. However, in optical flow estimation,A is
composed of the spatial gradients, which are estimated us-
ing numerical differentiation of the noisy image data. Better
performance can be expected if the noise inA and the fact
that correlation exists between gradient estimates of neigh-
boring pixels is taken into account [12].

3. CONSTRAINED TOTAL LEAST SQUARES FOR
OPTICAL FLOW ESTIMATION

Let A and b the noisy matrices for the system of optical
flow equations as defined in Eq. (2), and�A and�b be the
perturbation matrices that cancel out the noise inA andb,
respectively. That is,

(A+�A)x = b +�b;

or equivalently,

Ax + (�Ax��b) = b: (3)

If the noise in�A and�b can be modeled as the multipli-
cation of a coloring matrixL(x) with a white noise vector
�, we can reformulate the estimation problem using CTLS.
That is,

�Ax ��b = L(x) � �: (4)

The problem then takes the form:

min k�k2; subject toAx + L(x) � � = b: (5)

Solving for � from the constraint in Eq. (5) leads to
� = L+(x) (b�Ax), whereL+(x) denotes the Moore-
Penrose pseudo inverse ofL(x). The minimization ofk�k2
is equivalent to the minimization of�T �. The cost function
can then be defined as follows:

J(x) = (b�Ax)T L+(x)TL+(x) (b �Ax) : (6)

Figure 1: Left: the neighborhood structure for derivative
estimation. Right: pixels used for optical flow estimation at
positionsa.

To apply this technique to optical flow estimation, we must
define the noise vector� and derive the coloring matrixL(x)
according to the noise model in the matricesA andb.

The spatio-temporal derivatives@Et

@x
(si), @Et

@y
(si), and

@Et

@t
(si) are usually estimated using finite difference equa-

tions. Without loss of generality and for ease of presen-
tation,L(x) is derived in the following paragraph using a
simple two-point backward difference equation. Given the
neighborhood structure shown in Figure 1, the image inten-
sity derivatives at pixel positionsa can be calculated using
the following equations:
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If the image intensities are corrupted by i.i.d. noise, the
entries inA andb would be corrupted by correlated noise.
If a 3-point estimation window (Figure 1) and Eq. (7) are
used,A andb can be written as:
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We assume that the image intensities are corrupted by i.i.d.
noise, i.e.

Et(sj) = �Et(sj) + �j ; j = a; b; c; d; e; f and

Et�1(sk) = �Et�1(sk) + �0k; k = a; b; c; (9)

where�Et(�) is the true image intensity at timet, and�a; :::; �f
and�0a; �

0

b; �
0

c are i.i.d. zero mean noise with variance�2� . Let
x = (u v)T , and

� = (�d �e �f �c �b �a �0c �0b �0a )T :

We can defineL(x) as
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SinceL(x) is a full rank matrix with more columns than
rows,L+(x) = L(x)T

�
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�
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. The noise covari-
ance matrix�(x) can be computed as
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where

�21 = v2 + u2 + (u+ v + 1)2 + 1

�22 = uv

�23 = �v(u+ v + 1)

�24 = �u(u+ v + 1):

The minimization ofJ(x) in Eq. (6) with respect tox results
in the CTLS estimate of the optical flow at pixel positionsa.
This method can be generalized for larger window sizes and
for different finite difference equations.

4. PERFORMANCE BOUND

It is very insightful to compare the variance of an unbiased
estimator to the theoretical lower bound of the variance of
the estimator based on the same noise model. The most
widely quoted variance bound is probably the Cramer-Rao
lower bound (CRLB). Assuming a general Gaussian noise
model for the observation vector, i.e.,

Ax = b; x = (u; v; )
T

p(bjx) = N(Ax;�(x));

the CRLB is determined by the following equation

var(xi) �
�
I�1(x)

�
ii
; (12)

wherexi is theith component of the unknown vectorx and,
I(x) is the Fisher information matrix, whose(i; j)th ele-
ments is given by
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with tr [A] the trace of matrix A. For the details of the com-
putation of@Ax

@xi
, please refer to [13].

Figure 2: A frame from a simulated image sequence.
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Figure 3: Variance of estimates as a function of window size

5. EXPERIMENT

In this section simulations are conducted first to show the
accuracy of LS and CTLS methods as a function of the esti-
mation window size. In the simulation, a sequence of a sin-
gle object undergoing uniform motion is synthesized. The
simulated sequence is generated by translating the256 �
256-pixel image shown in Figure 2 to simulate a 2-pixel
motion in the horizontal direction. There is no motion in
the vertical direction. The image sequence is corrupted by
a zero mean white Gaussian noise with variance�2� = 16.
The optical flow estimation is performed on 64 pixel sites in
the center of the images. The variances of the estimates are
then averaged over these pixel sites.

Figure 3 shows the estimator variance versus the esti-
mation window size. The y-axis is the sum of variances of
the optical flow estimateŝu andv̂. From this figure, one can
see that CTLS is less accurate when the estimation window
size is small. This is probably because the CTLS technique
needs a large number of observations to capture the noise
statistics. As the number of observations gets larger, the es-
timates from CTLS become more accurate and eventually,
CTLS out-performs LS.
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Figure 4: Estimation error as a function of window size

window size CTLS
7� 7 35 sec.
11� 11 486 sec.
15� 15 1130 sec.

Table 1: Computation time versus window size.

Using the same simulated image sequence, the mean
squared error (MSE) of the estimates versus estimation win-
dow size is shown in Figure 4. Figure 4 is very similar to
Figure 3 because CTLS and LS are unbiased estimators. In
this case, the MSE should be the same as the variance of the
estimates. The computation time on a Pentium II 400MHz
machine running Linux operating system is listed in Ta-
ble 1. Note that the computation time depends on the non-
linear optimization algorithm used to solve Eq. (6). Both
conjugate gradient method and Powell’s conjugate direction
method have been tested. The results shown are from the
conjugate gradient method.

6. CONCLUSIONS

According to the experiments, the CTLS optical flow esti-
mation technique applied to single channel video sequences
outperforms the LS technique when the estimation window
size is large. The major disadvantage of the CTLS tech-
nique is its high computational cost. For example, when a
15 � 15 window is used, each evaluation of the optimiza-
tion process involves the computation of the pseudo inverse
of a 255 � 255 matrix. To make this technique practical,
one would prefer to keep the estimation window size under
11� 11. We are investigating the application of other con-
straints to improve the performance of CTLS using small
estimation windows.
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