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ABSTRACT

This paper presents an efficient adaptive algorithm for designing
FIR digital filters that are efficient according to anLp error crite-
ria. The algorithm is an extension of Burrus’ iterative reweighted
least-squares (IRLS) method for approximatingLp filters. Such
algorithm will converge for most significant cases in a few itera-
tions. In some cases however, the transition bandwidth is such that
the number of iterations increases significantly. The proposed al-
gorithm controls such problem and drastically reduces the number
of iterations required.

1. INTRODUCTION

In designing FIR filters, it is usually necessary to minimize an er-
ror norm. Typically, the two most commonly used norms are the
Chebishev norm (L1) and the least-squares norm (L2). However,
in some applications minimizing either the error energy (L2) or
the maximum error (L1) is not the optimal approach to designing
a filter. This article addresses the design of filters that are optimal
in theLp norm (i.e. filters designed through the minimization of
thep-th power of the error).

There is no analytical way to minimize thep-th power of the
error; therefore an iterative approach must be used. The applica-
tion of Iterative Reweighted Least Squares (IRLS) methods has
been studied intensively by applied mathematicians. In 1961 Law-
son [8] came up first with an IRLS algorithm to solve the Chebi-
shev approximation problem. He proved the existence of an opti-
mal solution and the linear convergence associated with his method.
Rice and Usow [11] extended Lawson’s method to a generaliza-
tion of theLp problem, pointing ut that Lawson’s method could
occationally be required to restart. Karlovitz [7] presented in 1970
an IRLS algorithm with guaranteed linear convergence for even
values ofp. Kahng [6] came up with an extension of Lawson’s
algorithm toLp problems, based on Newton-Raphson’s method,
and proved that his algorithm always converges. Independently,
Fletcher et al. [5] developed a similar algorithm. Burrus et al.
[2, 4, 3] developed a robust algorithm that would converge quadrat-
ically under most conditions; however it is sensitive to certain
cases where the transition bandwidth causes the algorithm to pro-
duce occasional jumps in the error. For such cases a large number
of iterations is required. The method presented in this article com-
bines the robustness of Burrus algorithm with some degree of flex-
ibility in the use of adaptive parameters that would allow for the

fast convergence of a Newton-based method and strong robustness.
The basic theory of IRLS methods applied to the design ofLp FIR
filters is presented, and several approaches are reviewed. The need
of an adaptive method that overcomes particular cases is justified
and elaborated.

2. FIR FILTER DESIGN

Typically, FIR filters are designed by considering a sampled ver-
sion of a desired frequency responseAd(!). For linear phase fil-
ters, it is possible to express the frequency response

H(!) =

N�1X
n=0

h(n) exp�j!n (1)

(whereh(n) is the length-N filter impulse response) in terms of a
real amplitude function and a phase term. Using symmetry proper-
ties of the Fourier transform, a linear-phase FIR filter is defined by
H(!) = A(!) exp�jM! , if h(n) satisfies some symmetry con-
straints [10]. For the purposes of this paper, only odd-length filters
with even symmetry will be considered. The real-valued amplitude
functionA(!) is defined as follows [4]

A(!) =

MX
n=0

a(n) cos!(M � n) (2)

where

a(n) =

(
2h(n) 0 � n �M � 1
h(M) n =M
0 otherwise

andM = (N � 1)=2. Equation (2) describes a linear system of
equations whose solution is a set of coefficients that characterize
the filter impulse response. In matrix form, this is expressed as
A = Ca, whereA is a column vector withL samples of the de-
sired frequency response,a is the vector ofN filter coefficients
andC is a cosine matrix required for the Fourier transform.

It is often desirable to take a large number of samples to de-
sign a small filter (in the sense thatL� N , whereL is the number
of frequency samples andN is the filter order). This setting will
result in an overdetermined system of equations without an exact
solution and, therefore, the problem of designing an FIR filter be-
comes one of approximating a desired frequency response based
upon a particular error norm. The weighted least-squares(L2)
norm, which considers the error energy, is defined by

k E(!) k2=
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whereAd(!) andA(!) are the desired and designed amplitude
responses respectively. A more general error criteria minimizes
thep-th power of the error with
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(3)

The weighted Chebishev (L1) criteria, which minimizes the max-
imum error, is given by

k E(!) k1= max
!2[0;�]

j W (!)(A(!)�Ad(!)) j

In all casesW (!) is a nonnegative weighting function.
Considering a discretized version of (3), the objective is to find

the coefficientsa(n) such that the scalar error

"p =

L�1X
k=0

j A(!k)�Ad(!k) j
p (4)

is minimized over the frequencies!k. Using theL2 norm, the
minimization of

" =

L�1X
k=0

j A(!k)�Ad(!k) j
2

results in
" = �T �

where� is the residual vector

� = Ca�Ad

The resulting normal equations are given by

CTCa = CTAd

A weighted error approach results in

" =

L�1X
k=0

w2
k j A(!k)�Ad(!k) j

2

with
" = �TW TW�

whereW is a diagonal matrix with the weightswk in its diagonal.
It can be proved that the resulting normal equations have the form

CTW TWCa = CTW TWAd (5)

The objective of IRLS algorithms consists in finding the optimal
weights in (5) that minimize the scalar error of (4).

3. IRLS METHODS

The basic IRLS approach to solve (3) consists in finding iteratively
the optimal weightsW for (5) using

am = [CTW T
mWmC]

�1CTW T
mWmAd (6)

at them-th iteration. The first guess foram considers unit weights
in the diagonal ofW . Then, the resulting error is found using

�m = Cam �Ad

Since we can express (4) as

" =

L�1X
k=0

wm j A(!k)�Ad(!k) j
2

we can define a weighting vector by

wm+1 = j�mj
(p�2)=2

For each iteration, these values are located in the diagonal ofW .
Then, (6) is used again until the method converges to the proper
solution. However, it has been found that this approach has in-
tense practical problems, since the inversion required by (6) often
uses an ill-posed matrix and, in most cases, convergence is not
achieved.

Rice and Usow [11] developed an algorithm based on Law-
son’s method that requires a multiplicative update of the weights
after each iteration. They used results from Motzkin and Walsh [9]
that warranteed the existence of a solution for the Chebishev ap-
proximation problem to support the use of a weighted least-squares
algorithm for theLp problem. They defined

wm+1 = w�m j�mj
�

where

� =

(p� 2)


(p� 2) + 1

and

� =
�

2

=

p� 2

2(
(p� 2) + 1)

The rest of the algorithm works the same way as the basic IRLS
method. However, the proper selection of
 will allow for a strong
convergence algorithm. Note that for
 = 0 we obtain the basic
IRLS algorithm.

Another approach to solve (5) consists in using a temporary
coefficient vector defined by

âm+1 = [CTW T
m+1Wm+1C]

�1CTW T
m+1Wm+1Ad (7)

The filter coefficients after each iteration are then updated by

am+1 = �âm+1 + (1 � �)am

This approach is known as the Karlovitz method [7], and it has
being claimed that it converges to the global optimal solution for
even valuesof 4 � p < 1. However, in practice several con-
vergence problems have been found even under such assumptions.
One drawback is that the convergence parameter� has to be op-
timized for each iteration, which requires the multiple evaluation
for different values of0 � � � 1, and a linear search for the best
value must be done. Therefore the overall execution time becomes
rather large.

Kahng [6] developed an algorithm based on Newton-Raphson’s
method that uses

� =
1

p� 1
(8)

to get

am =
âm + (p� 2)am�1

p� 1
(9)

This selection for� is based upon Newton’s method to minimize
�. The rest of the algorithm follows Karlovitz approach. However,
since� is fixed, there is no need to perform the linear search for its



best value. Since Kahng’s method is based upon Newton’s method,
it converges quadratically to the optimal solution. Kahng proved
that his method converges for all cases of� and for any problem. It
can be seen that Kahng’s method is a particular case of Karlovitz
algorithm, with� as defined in (8). Newton-raphson based al-
gorithms are not warranteed to converge to the optimal solution
unless they are somewhat close to the solution since they require
to know and invert the Hessian matrix of the minimized function,
which must be positive definite [1]. However, their quadratic con-
vergence makes them an appealing option.

Burrus, Barreto and Selesnick [4, 2, 3] developed a method
(which from now on will be referred to as BBS) that combines
the powerful quadratic convergence of Newton methods with the
robust initial convergence of the basic IRLS method, thus over-
coming the initial sensitivity of Newton-based algorithms and the
slow linear convergence of Lawson-based methods. To accelerate
initial convergence, their method for minimizing thep-th power of
the error uses initiallyp = K � 2, whereK is a convergence pa-
rameter defined by1 � K � 2. At the next iteration,p increases
its value by a factor ofK, to p = K2 � p. This is done at each
iteration, so to satisfy

pm = min(pdes; Kpm�1) (10)

The implementation of each iteration follows Karlovitz’s method
using the particular selection ofp given by (10).

4. ADAPTIVE ALGORITHM

Much of the performance of a method is based upon whether it
can reach a global minima for a certain error measure. In the case
of the methods described above, both convergence rate and sta-
bility play an important role in the method’s performance. Both
Karlovitz and RUL methods are supposed to converge linearly,
while Kahng’s and Burrus’ methods converge quadratically, since
they both use a Newton-based additive update of the weights.

Barreto showed in [2] that the modified version of Kahng’s
method (or BBS) typically converges faster than the RUL algo-
rithm. However, this approach presents some particular problems
that are dependent upon the transition bandwidth�. For some par-
ticular values of�, the BBS method will result in an ill-posed
weight matrix that causes theLp error to increase dramatically
after a few iterations. Two facts can be derived from Figure 1:
for this particular bandwidth the error increased slightly after the
fifth and eleventh iterations, and increased dramatically after the
sisteenth. Also, it is worth to notice that after such increase, the er-
ror started to decrease quadratically and that, at a certain point, it
flattened (thus reaching the computational limits of the computer).

The effects of different values ofK were studied to find out
if a relationship betweenK and the error increase could be deter-
mined. Figure 2 shows theLp error for different values of� and
forK = 1:7. It can be seen that some particular bandwidths cause
the algorithm to produce a very large error.

The conclusions derived above suggest the possibility to use
an adaptive algorithm that changes the value ofK so that the er-
ror always decreases. This idea was implemented by calculating
temporary new weight and filter coefficient vectors that will not
become the updated versions unless their resulting error is smaller
than the previous one. If this is not the case, the algorithm ”tries”
two values ofK, namely

KL = K � (1��) andKH = K � (1 + �) (11)
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Figure 1: a) BBS method, normal behavior; b) a problematic band-
with.
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Figure 2: BBS results for different bandwidths.



(where� is an updating variable). The resulting errors for each at-
tempt are calculated, andK is updated according to the value that
produced the smallest error. The error of this newK is compared
to the error of the nonupdated weights and coefficients, and if the
newK produces a smaller error, then such vectors are updated;
otherwise another update ofK is performed. The algorithm can
be summarized as follows,

1. Find the unweighted approximationa = C�1Ad and use
p0 = K � 2, where1 � K � 2.

2. Iteratively solve (7) and (9) using

�k =
1

pk � 1

and find the resulting error"k for thek-th iteration.

3. If "k � "k�1,

� Calculate (11).

� Select the smallest of"KL and "KH to compare it
with "k until a value is found that results in a de-
creasing error.

The algorithm described above changes the value ofK that
causes the algorithm to produce a large error.K is updated as
many times as necessary without changing the values of the weights,
the filter coefficients or the variable error powerp. If an optimal
value ofK exists, the algorithm will find it and continue with this
new value until another update inK becomes necessary. This al-
gorithm was implemented for several combinations ofK and�;
for all cases the new algorithm converged faster than the BBS al-
gorithm (obviously unless the values ofK and� are such that the
error never increases; in this case the new algorithm works exactly
as such method). The results are shown in Figure 3.a for the spec-
ifications from Figure 1. Whereas using the BBS method for this
particular case results in a large error after the sixteenth iteration,
the adaptive method converged before ten iterations.

Figure 3.b illustrates the change ofK per iteration in the adap-
tive method, using an update factor of� = 0:1. TheLp error
stops decreasing after the fifth iteration (where the BBS method
introduces the large error); however, the adaptive algorithm ad-
justs the value ofK so that theLp error continues decreasing. The
algorithm decreased the initial value ofK from 1.75 to its final
value of 1.4175 (at the expense of only one additional iteration
with K = 1:575).

5. CONCLUSIONS

A description of theLp FIR filter design problem was presented.
The use of iterative reweighted least squares methods to solve this
problem was illustrated and an overview of different approaches
was covered. Both RUL and Kahng’s methods improve the basic
IRLS performance with certain acceleration techniques; however
these methods are not robust enough since they are either sensitive
to the starting conditions (Kahng) or they have slow linear conver-
gence (RUL).

The BBS method is a fast-convergent algorithm. However,
its sensitiveness to the transition bandwidth requires a more robust
method. An adaptive algorithm was introduced as a solution to this
problem. The new method exhibits the same convergence proper-
ties as the BBS algorithm for most filters, but is able to adjust its
parameters to avoid the occasional dramatic error increases, thus
making it a robust alternative for designingLp linear phase filters.
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