ADAPTIVE ITERATIVE REWEIGHTED LEAST SQUARES DESIGN OF Lp FIR FILTERS
Ricardo A. Vargas and Charles S. Burrus

Electrical and Computer Engineering Department
Rice University
Houston, TX 77005
rickv@rice.edu, csbh@ece.rice.edu

ABSTRACT fast convergence of a Newton-based method and strong robustness.
This paper presents an efficient adaptive algorithm for designing 1€ basic theory of IRLS methods applied to the desigh,oF IR
FIR digital filters that are efficient according to &g error crite-  TIters is presented, and several approaches are reviewed. The need
fia. The algorithm is an extension of Burrus' iterative reweighted of an adaptive method that overcomes particular cases is justified
least-squares (IRLS) method for approximatibg filters. Such ~ and elaborated.
algorithm will converge for most significant cases in a few itera-
tions. In some cases however, the transition bandwidth is such that 2. FIR FILTER DESIGN
the number of iterations increases significantly. The proposed al-

gorithm controls such problem and drastically reduces the numberTypically, FIR filters are designed by considering a sampled ver-
of iterations required. sion of a desired frequency respon$g(w). For linear phase fil-
ters, it is possible to express the frequency response

N-1

H(w) =Y h(n)exp 7" (1)
n=0
1. INTRODUCTION (whereh(n) is the lengthA filter impulse response) in terms of a

real amplitude function and a phase term. Using symmetry proper-
In designing FIR filters, it is usually necessary to minimize an er- ties of the Fourier transform, a linear-phase FIR filter is defined by
ror norm. Typically, the two most commonly used norms are the H(w) = A(w)exp?M“, if h(n) satisfies some symmetry con-
Chebishev norml{..) and the least-squares norifn). However, straints [10]. For the purposes of this paper, only odd-length filters
in some applications minimizing either the error energy)(or with even symmetry will be considered. The real-valued amplitude
the maximum errork..) is not the optimal approach to designing function A(w) is defined as follows [4]
a filter. This article addresses the design of filters that are optimal

M
in the L, norm (i.e. filters designed through the minimization of
thep-th I;)OWGI’ of the error). Alw) = Z a(n) cosw(M — n) @
There is no analytical way to minimize theth power of the n=0
error; therefore an iterative approach must be used. The applica-where
tion of Iterative Reweighted Least Squares (IRLS) methods has 2h(n) 0<n<M-1
been studied intensively by applied mathematicians. In 1961 Law- a(n) = ¢ h(M) n= M
son [8] came up first with an IRLS algorithm to solve the Chebi- 0 otherwise

shev approximation problem. He proved the existence of an opti-andM = (N — 1)/2. Equation (2) describes a linear system of
mal solution and the linear convergence associated with his methodequations whose solution is a set of coefficients that characterize
Rice and Usow [11] extended Lawson’s method to a generaliza- the filter impulse response. In matrix form, this is expressed as
tion of the L,, problem, pointing ut that Lawson’s method could A = Ca, whereA is a column vector wittl, samples of the de-
occationally be required to restart. Karlovitz [7] presented in 1970 sired frequency response,is the vector ofN filter coefficients

an IRLS algorithm with guaranteed linear convergence for even andC'is a cosine matrix required for the Fourier transform.

values ofp. Kahng [6] came up with an extension of Lawson’s It is often desirable to take a large number of samples to de-
algorithm to L,, problems, based on Newton-Raphson’s method, sign a smallfilter (in the sense that> N, whereL is the number

and proved that his algorithm always converges. Independently,of frequency samples anl is the filter order). This setting will
Fletcher et al. [5] developed a similar algorithm. Burrus et al. result in an overdetermined system of equations without an exact
[2, 4, 3] developed a robust algorithm that would converge quadrat- solution and, therefore, the problem of designing an FIR filter be-
ically under most conditions; however it is sensitive to certain comes one of approximating a desired frequency response based
cases where the transition bandwidth causes the algorithm to pro-upon a particular error norm. The weighted least-squéfes

duce occasional jumps in the error. For such cases a large numbenorm, which considers the error energy, is defined by

of iterations is required. The method presented in this article com- 1

bines the robustness of Burrus algorithm with some degree of flex- _ (1 " _ 2 :
ibility in the use of adaptive parameters that would allow for the FBw) = (w o Ww)(AW) - Aa(w))"dw



where A4(w) and A(w) are the desired and designed amplitude Since we can express (4) as
responses respectively. A more general error criteria minimizes

thep-th power of the error with " ,
€= Zwm | A(wi) — Aa(wr) |
k=0

| E@) = (% / W(wa(w)—Ad(w))Pdw)" )

we can define a weighting vector by

The weighted Chebishe\.({,) criteria, which minimizes the max-

m|(p—2)/2
imum error, is given by

Wm+41 = |E

For each iteration, these values are located in the diagori&l.of

| E(w) [le= wrél[%fr] | W(w)(A(w) — Aa(w)) | Then, (6) is used again until the method converges to the proper

’ solution. However, it has been found that this approach has in-

In all casedV (w) is a nonnegative weighting function. tense practical problems, since the inversion required by (6) often

Considering a discretized version of (3), the objective is to find uses an ill-posed matrix and, in most cases, convergence is not
the coefficients:(n) such that the scalar error achieved.

Rice and Usow [11] developed an algorithm based on Law-

L-1 son’s method that requires a multiplicative update of the weights

ep = Z | Alwr) — Aawr) | (4) after each iteration. They used results from Motzkin and Walsh [9]
k=0 that warranteed the existence of a solution for the Chebishev ap-
proximation problem to support the use of a weighted least-squares

is minimized over the frequencies,. Using theL, norm, the algorithm for theZ,, problem. They defined
» .

minimization of

Wm+1 = w::;, |€”m,|B

e= > | Alws) — Aa(wi) |”

where
e P=2)
results in vp—2)+1
e=¢c'e and

wheree is the residual vector B= a___p-2

‘ 2y 2(v(p—2)+1)

e=Ca— Aqg The rest of the algorithm works the same way as the basic IRLS
_ ) _ method. However, the proper selectiomoivill allow for a strong

The resulting normal equations are given by convergence algorithm. Note that for= 0 we obtain the basic

IRLS algorithm.
Another approach to solve (5) consists in using a temporary
coefficient vector defined by

cTca=cCTAy

A weighted error approach results in
Lo1 bmi1 = [CT Wi Wi 1O CT W Wi Aa - (7)
2 2
°= Z wic | Awr) = Aa(we) | The filter coefficients after each iteration are then updated by
k=0
with Am+41 = )\&nz+l + (]- - )\)a”m
T T
e=c W We This approach is known as the Karlovitz method [7], and it has
whereW is a diagonal matrix with the weights;, in its diagonal. being claimed that it converges to the global optimal solution for
It can be proved that the resulting normal equations have the formeven value®f 4 < p < co. However, in practice several con-
- - vergence problems have been found even under such assumptions.
C"W WCa=C W WAy (5) One drawback is that the convergence paramkteas to be op-
timized for each iteration, which requires the multiple evaluation
for different values of) < A < 1, and a linear search for the best
value must be done. Therefore the overall execution time becomes
rather large.

The objective of IRLS algorithms consists in finding the optimal
weights in (5) that minimize the scalar error of (4).

3. IRLS METHODS Kahng [6] developed an algorithm based on Newton-Raphson'’s

method that uses

The basic IRLS approach to solve (3) consists in finding iteratively = 1 8)

the optimal weight3V” for (5) using p—1
to get

am = [CTWEW,,C] ' CTWE W, Ag (6) ’ im + (p = 2)am—1 ©)
Am =
at them-th iteration. The first guess far,, considers unit weights ) ) ] p—1 L
in the diagonal of¥". Then, the resulting error is found using This selection for\ is based upon Newton’s method to minimize

e. The rest of the algorithm follows Karlovitz approach. However,
em = Caym — Ag sincel is fixed, there is no need to perform the linear search for its



best value. Since Kahng's method is based upon Newton’s method,
it converges quadratically to the optimal solution. Kahng proved
that his method converges for all cases @ind for any problem. It
can be seen that Kahng's method is a particular case of Karlo - &) 12021025
algorithm, with A as defined in (8). Newton-raphson based ¢ o1 A R
gorithms are not warranteed to converge to the optimal solut
unless they are somewhat close to the solution since they req
to know and invert the Hessian matrix of the minimized functio 5 **
which must be positive definite [1]. However, their quadratic co ®o0.0s- 1
vergence makes them an appealing option. ook |
Burrus, Barreto and Selesnick [4, 2, 3] developed a meth
(which from now on will be referred to as BBS) that combine

0.1 q

the powerful quadratic convergence of Newton methods with 1 0 s 10 15 2 P P P 2 - 0
robust initial convergence of the basic IRLS method, thus o Iteration
coming the initial sensitivity of Newton-based algorithms and tt b) {,=02,1,=0.248

slow linear convergence of Lawson-based methods. To accele °° ‘ ‘

initial convergence, their method for minimizing theh power of

the error uses initially = K * 2, whereK is a convergence pa- _
rameter defined by < K < 2. At the next iterationp increases §0_4
its value by a factor ofC, top = K? % p. This is done at each _2
iteration, so to satisfy 02

Pm = min(pdeéﬁKpm*l) (10) 0 L L L L
50 100 150 200 250

Iteration

The implementation of each iteration follows Karlovitz’'s methou

using the particular selection pfgiven by (10). ) ) )
Figure 1: a) BBS method, normal behavior; b) a problematic band-

with.
4. ADAPTIVE ALGORITHM

Much of the performance of a method is based upon whether it
can reach a global minima for a certain error measure. In the case
of the methods described above, both convergence rate and sta-
bility play an important role in the method’s performance. Both
Karlovitz and RUL methods are supposed to converge linearly,
while Kahng’s and Burrus’ methods converge quadratically, since
they both use a Newton-based additive update of the weights. L, error for different banduwids, {,-0.2
Barreto showed in [2] that the modified version of Kahng
method (or BBS) typically converges faster than the RUL alg
rithm. However, this approach presents some particular proble os
that are dependent upon the transition bandwitdtRor some par-
ticular values ofg3, the BBS method will result in an ill-posed
weight matrix that causes the, error to increase dramatically ,,
after a few iterations. Two facts can be derived from Figure &
for this particular bandwidth the error increased slightly after t "0
fifth and eleventh iterations, and increased dramatically after
sisteenth. Also, it is worth to notice that after such increase, the
ror started to decrease quadratically and that, at a certain poir
flattened (thus reaching the computational limits of the computt \
The effects of different values df were studied to find out
if a relationship betweel” and the error increase could be dete
mined. Figure 2 shows thk, error for different values off and
for K = 1.7. It can be seen that some particular bandwidths ca
the algorithm to produce a very large error.
The conclusions derived above suggest the possibility to |
an adaptive algorithm that changes the valué<o$o that the er-

0.4

I i .
ror always decreases. This idea was implemented by calcula _ rereten . Bandwidth B
temporary new weight and filter coefficient vectors that will not
become the updated versions unless their resulting error is smaller Figure 2: BBS results for different bandwidths.

than the previous one. If this is not the case, the algorithm "tries”
two values ofK’, namely

KL:K*(l—A)andKH:K*(1+A) (11)



(whereA is an updating variable). The resulting errors for each ¢
0.11

L f =0.2, B=0.048, K_=1.75
a) perror(p , B Ky )

tempt are calculated, arfd is updated according to the value tha
produced the smallest error. The error of this éws compared

to the error of the nonupdated weights and coefficients, and if 1 o}
new K produces a smaller error, then such vectors are updatgo
otherwise another update &f is performed. The algorithm can _=
be summarized as follows, 007

0.1r
08

1. Find the unweighted approximation= C~'A, and use >

0.05

po =K -2, wherel < K <2.
2. lteratively solve (7) and (9) using

I
2 4 6 8 10 12 14 16 18 20

Iterations

b) Variations in K

=

Ak

and find the resulting errar, for the k-th iteration.
3. fer > en_1,
e Calculate (11).
e Select the smallest ofx, andex, to compare it

12

with €, until a value is found that results in a de-
creasing error.

The algorithm described above changes the valu& dhat
causes the algorithm to produce a large errfr.is updated as
many times as necessary without changing the values of the weights,
the filter coefficients or the variable error power If an optimal
value of K exists, the algorithm will find it and continue with this
new value until another update id becomes necessary. This al-
gorithm was implemented for several combinationgsbfand 3;
for all cases the new algorithm converged faster than the BBS al-
gorithm (obviously unless the values &f andg3 are such that the
error never increases; in this case the new algorithm works exactly (2]
as such method). The results are shown in Figure 3.a for the spec-
ifications from Figure 1. Whereas using the BBS method for this
particular case results in a large error after the sixteenth iteration, [3]
the adaptive method converged before ten iterations.

Figure 3.b illustrates the changeEfper iteration in the adap-
tive method, using an update factor &f = 0.1. The L, error [4]
stops decreasing after the fifth iteration (where the BBS method
introduces the large error); however, the adaptive algorithm ad-
justs the value oS so that thelL,, error continues decreasing. The
algorithm decreased the initial value &f from 1.75 to its final
value of 1.4175 (at the expense of only one additional iteration
with K = 1.575).

(1]

(5]

(6]
5. CONCLUSIONS
A description of theL,, FIR filter design problem was presented. [7]
The use of iterative reweighted least squares methods to solve this
problem was illustrated and an overview of different approaches
was covered. Both RUL and Kahng's methods improve the basic [8]
IRLS performance with certain acceleration techniques; however

1
2 4 6 8 10 12 14 16 18 20

Iterations

Figure 3: a)L, error obtained with the adaptive method; b)
Change of K.
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