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ABSTRACT bicle
In this paper we present a very fast and accurate fast-match algo-

rithm which, when followed by a regular beam search restricted a[blc
b[c]d

within only the subset of words selected by the fast-match, can
\ c[d]&

ing the Viterbi (or beam) search algorithm. In this search strategy,

the recognition vocabulary is structured as a single phonetic tree in

the fast-match pass. The search on this phonetic tree is a variation

of the Viterbi algorithm. Especially, we are able to use a word bi-

gram language model without making copies of the tree during the a[dle
search. This is a novel fast-match algorithm that has two important

properties: high-accuracy recognition and run-time proportional to

only the cube root of the vocabulary size. dle]&

speed up the recognition process by at least two orders of magni- .
tude in comparison to a typical single-pass speech recognizer utiliz- &[aJb,d <

1. INTRODUCTION Figure 1: The phonetic tree for a hypothetical lexicon of three
words‘abc’, ‘abed’, and‘ade’.

There have been many studies to speed up the recognition pro-

cess for continuous speech recognition with very large vocabular- . ) .
ies. These research could be divided into two broad classes: infd90rithm and report our finding about the computational require-
grated fast-match within a single pass search strategy or multiplB€nts-
pass strategy where successive passes deploy more detailed models
through word-graphs, lattices, or N-Best interfaces. At BBN, we
have been using the multi-pass search strategy where the first pass . .
is a fast-match. Our search strategy has changed over time; at so] l’m‘1eba d}/oca:L‘JIzzllr){ thhat Conﬁ'StS t.Of the foIIo_wt|_n 9 thre; words,
time up to four passes [1], but currently consists of two passes. Th&'¢: abcd, and ade  WNosSe€ pnonetic pronunciations agev-c,

second pass, a time-synchronous beam search constrained wi iR-c-d e;)nda—d-etrestp((ejctlvgll?/. Ihi %h_on'ci_tlc trei f(3|_rht his vocta ?.u'
the reduced search space produced by the first pass, was descrlg%tctarlh N COCTS ruc eth;S ' us_trg c hm Igufr?h ’ h € annotations
in detalil in [2]. However, the fast-match algorithm used in the firsf'eX! t0 the nodes are mpositaripnones ot the phonemes as-

pass, which has recently received a US patent [3], has not been e r|1ated }N'th thhe nod:;. Fr? r exalm;t}:ﬂ@a]li),dtc_jert]r? teks) ator(r;posngth
scribed until now. While a number of fast-match algorithms hawv fiphone for phonemea whose feft context 1s the boundary wi

been published, our algorithm continues to have novel features tt £ specnal symb_dl& ! and right co_ntext IS pho_n'emels’ or'd’.
have not appeared in the literature. at is, the special triphong[a]b,d is acompositionof two nor-

mal triphonexk[alb and&[a]d . All other nodes can be intepreted
In this fast-match algorithm, the vocabulary is organized as a ph#? the same manner; for examplei¢]d is a composite triphone for
netic tree similar to Ney's [4]. However, in contrast to prior ap-Phonemecwhose left context is phonenfieand right contexd.

proaches in which several copies of the trees are needed in ordﬁ]r babl . h teristi f thi f oh
to use a word bigram language model, the innovation in this algo- ere are probably some unique characteristics of this type of pho-

rithm allows us to use a word bigram language model with just Eetic tree in comparison to other_ types of lexical trees studied_ be-
single phonetic tree. In the remainder of the paper, we will prese ?.rtﬁ’ tShUCh a; thattcr)]f N(a)]/s [ﬂ First, tr}etrﬁ)hc;nemez are %ss%ualtedt
in detail how we construct such a phonetic tree and how to estimaft € nodes rainer than e arcs of he free. second, the fas

the acoustic and language models. Then we will explain the searBhoneme node of each word IS kept unique, even if the yvord 'S a
substring of another word. Third, each node in the tree is associ-

2. PHONETIC TREE



ated with aset id representing the set of words which share thidast phoneme of a word given a preceding word is just the usual
node. The last two characteristics of this type of phonetic tree makeord bigram probability.

it possible to use a word bigram language model during the search
without tree copying. The lower-order composite set ngrams (i.e. the set unigrams) can

alse be approximated in the same manner.

3. ACOUSTIC MODELS . . .
To say it another way, the composite set bigram language model

With the phonetic tree constructed as in Figure 1 where each notiged in this fast-match is a different representation of the usual
represents a (possibly shared) triphone, the acoustic model for tH@rd bigram language model with some additions. First, the usual
composite triphone associated with that node can be approximatéd (wi|w;) now becomesr({w; }|w;), where{w; } is the single-

as a weighted average of the correspondent normal triphones. H8P Set that consists of only;. Pr(w:) becomesPr ({w;}). For

a Tied Mixture (TM) or Phonetically-Tied Mixture (PTM) or State- SOMe sek; which includes more than one membe; (s|w;) =
Clustered Tied-Mixture (STM) model [5], the correspondent nor-vakesi Pr(wi|w;). And Pr(si) = ZVwkEsi Pr(wy).

mal triphones share the same codebook (i.e. a Gaussian mixture)

whereas their mixture weights are separate. Then the composite tri- 5. THE SEARCH ALGORITHM

phone would use that same codebook and its mixture weights are the

weighted average of the mixture weights of the correspondent nofhe search algorithm is similar to the time-synchronous beam

mal triphones. For example, the mixture Weiqﬁ(t[a]b,d for com- search [6] with a small addition to use the composite set bigrams.

ponent; of the Gaussian mixture for composite triphdfa]b,d is Again, assume the sarPe phonetlc_tree as before, at soma,tl_me
calculated as: somek words end. Lety; be the partial path score from the begin-

ning of the sentence up to wotd}; at timet¢, node&[a]b,d will be
+ iRl (tlald activated with the product score
c&la]b + c&lald

&[a]b &[alb
&lalb,d _ Yj x 1l
v; =

s =arg ma)gSiSk{af * Pr(&[alb, d|w;)}. Q)
wherev; stands for the mixture weight for componginaf the nor- _ )
mal triphonez and ¢ stands for the EM (training) count of the Thatis, we search over thieending words for the best word to go

normal triphonez. into node&[a]b,d . The value of and the time are then associated
and carried along with nod&[a]b,d during its duration. At some
4. LANGUAGE MODELS t; frames later, with an exit scoré, &[a]b,d will activate a[b]c

anda[d]e with the products

In the same manner as done for the acoustic models, we can ap- ,
proximate a bigram language model for these nodes as well. In u=arg ma)£<i<k{af * Pr(a[b]c|w;)} * s
contrast to previous approaches where the language bigram proba- o $
bility is applied either at the first phoneme or the last phoneme nodmd
with some form of tree copying, our algorithm allows us to apply
the language probabilitgumulativelyover all composite triphone
nodes of the words in the single tree. Assume the same phonetgspectively. Note that, we still search over the s&maading words
tree as in Figure 1, and some waidhas just ended, we want to at timet, but we might possibly select a different preceding word.
apply the probability of going into nod&[a]b,d. Since all three Botha[b]c anda[d]e carry along with them the timg and the val-
words, ‘abc’, ‘abed’, and‘ade’, share this node, the probability of uesu andv respectively. Note that the divisiari/s in effect takes

!

v =arg ma)iSiSk{af * Pr(a[d]e|w;)} * S;

going into node&[a]b,d given the preceding word would be out the temporary composite set bigrdtn(&[a]b, d|w;) used in
the preceding node. This is the case sisicis the product ok and

Pr(&[a]b, d|w) = Pr(abc|lw) + Pr(abed|w) + Pr(ade|w). the acoustic score for nodgalb,d from timet to timet + ¢;.
Similarly, Then after some, frames later, assume that noai®]c ends with

. p . ) )
Pr(a[b]cjw) = Pr(abclw) + Pr(abed|w), ;neiﬁjsgt;m . In turn, a[b]c will activate b[c]& andb[c]d with

Pr(b[c]&|w) = Pr(abc|w), y
Pr(blc]d|w) = Pr(c[d]&|w) = Pr(abed|w), p=argmax ;o {oi « Pr(blc]&lwi)} + —

and and
Pr(a[d]e|w) = Pr(d[e]&|w) = Pr(ade|w). . '
g =arg max ., ., {a; x Pr(b[c]d|w;)} M
We call this language model@mposite set bigram modsihce it respectively. Again, we still search over the same set of teding
is the collection of the conditional probability of a set of words thatyords.
share a composite triphone given a preceding word. Note that, since
the last phonemes of the words are not shared, the sets associdedall that by the design of the phonetic tree, the composite set
with the leaves are singletons (i.e. sets which consist of a singéssociated with the node representing the last phoneme of the
member). Consequently, the conditional probability of the set at thegord is a singleton set. So, for nodgc]&, Pr(b[c]&|w;) =



Pr({abc}|w;) = Pr(abclw;). Consequently, the search algorithmcided to measure the maximum loss caused by the fast-match. As

really uses a true word bigram language model when it reaches theported in [9], we have recently developeetering tooldo mea-

last phoneme of the word. All other set bigrams used for the irsure the upper-bound loss to each pass. The metering tool ensured

terior nodes could be considered as partial or temporary languatiet all the correct words of the sentences were saved in the region

model scores. The gradual amortization of the language modef their correct boundaries. By doing so, the final recognition word

score makes pruning much more efficient and robust. error rate improved only by an absolutd % for a typical test with

word error rate of30%. This shows that although the best result

Eventually, nodeb[c]& will end, say atts frames later, and the from the fast-match is not as accurate as the full search, it never

search will cycle back to the propagation mentioned in Equation dauses increased error for the second pass.

for the root node of the phonetic tree with a new vajg’t 23,

As reflected in Equation 1, the word bigraftr(b[c]&|w;) isnot 5 3 Efficiency Issues

taken out (as those composite set bigrams at the interior nodes are,

through the divisions’ /s andw’ /u, etc...). Itis possible to make the fast-match run as fast as possible provided
) ] ] ) ) that it can save sufficiently good words ending at each frame for the

In general, the propagation of theories on this phonetic tree is quitgcong pass. We typically save about 100 words per frame. The first

similar to that of a beam search on a linear lexicon, except for tr\ﬁing that can speed up the search is to mininiize Equation 1

addition of the adjustment of the cc_Jmposite set bigrams Whe_n aPrhis also helps all the other arg max.,o.... evaluation as well).

proaching a phoneme node: To activate a node, we temporarily Usgyht after saving these words to guide the second pass later, this

some composite bigram probability; to leave that node, we remoygt can be truncated to leave only a few high-score words. Empiri-

that temporary bigram probability. The closer the search approachgény‘ we observed that for a 20000-word demo systerran be 4
the end of the word, it uses a more complete bigram probability. A, g

the very last phoneme of the word, the search actually uses the word

bigram language score. Another part of the computation that takes a long time is the ac-
] cess to the bigram probabilities, since these are normally stored in a
5.1. Normalized Forward-Backward compact representation. To avoid this, we establish a bigram cache

for a few active states (ending words). For each of these states, we

As described in [2], the only goal of this fast-match is to keep th@ave a random access array of all of the bigram probabilities.
likely word endings and their partial scores to guide the second pass.

This can be simply done by maintaining a list of words ending a¥Ve can also save computation by not evaluating arg,max, {af *

each frame and their partial scores. At each time frame, we recofé-(a new destination nodke;)} when the set id of the new desti-

the score of the final state of each word ending.ebe the set of nation node is the same as that of the source node. Instead, we use
words ending at time, andafﬂi be the partial path score up to word the same result evaluated when going into the source node before.
w; at timet. Eachafui represents the probability of the speechThis can be detected easily by checking if there is only one out arc
from the beginning of the utterance up to tim@iven the most from the source node. This is true since, from the design of the pho-
likely word sequence ending with worg; times the probability of netic tree, if there is only one out arc at a node, the destination node
the language model for that word sequence. has the same set id as the source node.

As described in [7] and [8], the second backward pass is essentially 6. COMPUTATION VERSUS
the time-synchronous beam search. When some woshds at
some timet with a partial scorgd’, (3 is similar toa in the forward VOCABULARY SIZE

pass but from_ the enq of the_ utteran(_:e upoinstead of activating To learn how the computation of this search strategy (fast-match fol-
the whole lexicon as in th? !lnear Iexu_:on beam sea_rch, we c_mly aClwed by a trigram Forward-Backward beam search [8]) grows with
vate those worda; € Q™" if they satisfy the following condition: vocabulary size, we measured the computation required at three dif-
ferent vocabulary sizes: 1500 words, 5000 words, and 20000 words.
* Pr(w;|w,w;) > v The time required, as a fraction of real time, is shown plotted against
the vocabulary size in Figure 2. As can be seen, the computation in-

wherew; is the best ‘preceding’ word af, and-y is the forward- ~ creases very slowly with increased vocabulary.
backward pruning threshold.

—1
e B,

*
maxat—!  maxgt

To understand the behavior better, we plotted the same numbers on
facihili a log-log scale in Figure 3. Here we can see that the three points
5.2. AdmISSIblhty fall neatly on a straight line, leading us to the conclusion that the

The fast-match algorithm is clearly not admissible in a strict sens§oMputation grows as a power of the vocabulary size. Solving the
We typically use a PTM model with 256 Gaussians per codebodgduation gives us the formula
in this fast-match pass. To see if we could improve the final recog- . 1/3
. - ; time = 0.03V
nition accuracy by using better models for the fast-match, we did
several experiments with more Gaussians per PTM codebook, @here V is the vocabulary size.
even an STM model. It was interesting to find out that these better
models never improved the final recognition accuracy. So we d&his is very encouraging, since it means that if we can decrease
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Figure 2: Run time vs. vocabulary size, linear scale, measured drigure 3: Run time vs. vocabulary size, log-log scale, measured on
an HP735 with 400 Meg RAM in 1993 an HP735 with 400 Meg RAM in 1993

the computation needed by a small factor, it would be feasible 0ABT63-94-C-0063. The views and findings contained in this ma-
increase the vocabulary size by a larger factor, making recognitidarial are those of the authors and do not necessarily reflect the posi-

with very large vocabularies possible. tion or policy of the Government and no official endorsement should
be inferred.

As a matter of fact, a year later in 1994, after some code optimiza-
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