
SINGLE-TREE METHOD FOR GRAMMAR-DIRECTED SEARCH

Long Nguyen and Richard Schwartz

BBN Technologies, GTE Internetworking
70 Fawcett Street

Cambridge, MA 02138, USA
ln@bbn.com

ABSTRACT

In this paper we present a very fast and accurate fast-match algo-
rithm which, when followed by a regular beam search restricted
within only the subset of words selected by the fast-match, can
speed up the recognition process by at least two orders of magni-
tude in comparison to a typical single-pass speech recognizer utiliz-
ing the Viterbi (or beam) search algorithm. In this search strategy,
the recognition vocabulary is structured as a single phonetic tree in
the fast-match pass. The search on this phonetic tree is a variation
of the Viterbi algorithm. Especially, we are able to use a word bi-
gram language model without making copies of the tree during the
search. This is a novel fast-match algorithm that has two important
properties: high-accuracy recognition and run-time proportional to
only the cube root of the vocabulary size.

1. INTRODUCTION

There have been many studies to speed up the recognition pro-
cess for continuous speech recognition with very large vocabular-
ies. These research could be divided into two broad classes: inte-
grated fast-match within a single pass search strategy or multiple-
pass strategy where successive passes deploy more detailed models
through word-graphs, lattices, or N-Best interfaces. At BBN, we
have been using the multi-pass search strategy where the first pass
is a fast-match. Our search strategy has changed over time; at some
time up to four passes [1], but currently consists of two passes. The
second pass, a time-synchronous beam search constrained within
the reduced search space produced by the first pass, was described
in detail in [2]. However, the fast-match algorithm used in the first
pass, which has recently received a US patent [3], has not been de-
scribed until now. While a number of fast-match algorithms have
been published, our algorithm continues to have novel features that
have not appeared in the literature.

In this fast-match algorithm, the vocabulary is organized as a pho-
netic tree similar to Ney’s [4]. However, in contrast to prior ap-
proaches in which several copies of the trees are needed in order
to use a word bigram language model, the innovation in this algo-
rithm allows us to use a word bigram language model with just a
single phonetic tree. In the remainder of the paper, we will present
in detail how we construct such a phonetic tree and how to estimate
the acoustic and language models. Then we will explain the search

~
&[a]b,d

�
��7

S
SSw

~
a[b]c

~
a[d]e

�
��7

S
SSw

~
b[c]&

~
b[c]d

S
SSw

~
d[e]&

S
SSw

~
c[d]&

Figure 1: The phonetic tree for a hypothetical lexicon of three
words‘abc’, ‘abcd’, and‘ade’.

algorithm and report our finding about the computational require-
ments.

2. PHONETIC TREE

Assume a vocabulary that consists of the following three words,
‘abc’, ‘ abcd’, and ‘ade’ whose phonetic pronunciations area-b-c,
a-b-c-d, anda-d-e respectively. The phonetic tree for this vocabu-
lary can be constructed as illustrated in Figure 1. The annotations
next to the nodes are thecompositetriphones of the phonemes as-
sociated with the nodes. For example,&[a]b,d denotes acomposite
triphone for phoneme‘a’ whose left context is the boundary with
the special symbol‘&’ , and right context is phonemes‘b’ or ‘d’ .
That is, the special triphone&[a]b,d is acompositionof two nor-
mal triphones&[a]b and&[a]d . All other nodes can be intepreted
in the same manner; for example,b[c]d is a composite triphone for
phonemec whose left context is phonemeb and right contextd.

There are probably some unique characteristics of this type of pho-
netic tree in comparison to other types of lexical trees studied be-
fore, such as that of Ney’s [4]. First, the phonemes are associated
with the nodes rather than the arcs of the tree. Second, the last
phoneme node of each word is kept unique, even if the word is a
substring of another word. Third, each node in the tree is associ-



ated with aset id representing the set of words which share this
node. The last two characteristics of this type of phonetic tree make
it possible to use a word bigram language model during the search
without tree copying.

3. ACOUSTIC MODELS

With the phonetic tree constructed as in Figure 1 where each node
represents a (possibly shared) triphone, the acoustic model for the
composite triphone associated with that node can be approximated
as a weighted average of the correspondent normal triphones. For
a Tied Mixture (TM) or Phonetically-Tied Mixture (PTM) or State-
Clustered Tied-Mixture (STM) model [5], the correspondent nor-
mal triphones share the same codebook (i.e. a Gaussian mixture)
whereas their mixture weights are separate. Then the composite tri-
phone would use that same codebook and its mixture weights are the
weighted average of the mixture weights of the correspondent nor-
mal triphones. For example, the mixture weightv

&[a]b;d
j for com-

ponentj of the Gaussian mixture for composite triphone&[a]b,d is
calculated as:

v
&[a]b;d
j =

v
&[a]b
j � c&[a]b + v

&[a]d
j � c&[a]d

c&[a]b + c&[a]d

wherevxj stands for the mixture weight for componentj of the nor-
mal triphonex and cx stands for the EM (training) count of the
normal triphonex.

4. LANGUAGE MODELS

In the same manner as done for the acoustic models, we can ap-
proximate a bigram language model for these nodes as well. In
contrast to previous approaches where the language bigram proba-
bility is applied either at the first phoneme or the last phoneme node
with some form of tree copying, our algorithm allows us to apply
the language probabilitycumulativelyover all composite triphone
nodes of the words in the single tree. Assume the same phonetic
tree as in Figure 1, and some wordw has just ended, we want to
apply the probability of going into node&[a]b,d . Since all three
words,‘abc’, ‘abcd’, and‘ade’, share this node, the probability of
going into node&[a]b,d given the preceding wordw would be

Pr(&[a]b;djw) = Pr(abcjw) + Pr(abcdjw) + Pr(adejw):

Similarly,

Pr(a[b]cjw) = Pr(abcjw) + Pr(abcdjw);

P r(b[c]&jw) = Pr(abcjw);

P r(b[c]djw) = Pr(c[d]&jw) = Pr(abcdjw);

and
Pr(a[d]ejw) = Pr(d[e]&jw) = Pr(adejw):

We call this language model acomposite set bigram modelsince it
is the collection of the conditional probability of a set of words that
share a composite triphone given a preceding word. Note that, since
the last phonemes of the words are not shared, the sets associated
with the leaves are singletons (i.e. sets which consist of a single
member). Consequently, the conditional probability of the set at the

last phoneme of a word given a preceding word is just the usual
word bigram probability.

The lower-order composite set ngrams (i.e. the set unigrams) can
alse be approximated in the same manner.

To say it another way, the composite set bigram language model
used in this fast-match is a different representation of the usual
word bigram language model with some additions. First, the usual
Pr(wijwj) now becomesPr(fwigjwj), wherefwig is the single-
ton set that consists of onlywi. Pr(wi) becomesPr(fwig). For
some setsi which includes more than one member,Pr(sijwj) =P

8wk2si
Pr(wkjwj). AndPr(si) =

P
8wk2si

Pr(wk).

5. THE SEARCH ALGORITHM

The search algorithm is similar to the time-synchronous beam
search [6] with a small addition to use the composite set bigrams.
Again, assume the same phonetic tree as before, at some timet,
somek words end. Let�t

i be the partial path score from the begin-
ning of the sentence up to wordwi at timet, node&[a]b,d will be
activated with the product score

s = arg max1�i�kf�
t
i � Pr(&[a]b;djwi)g: (1)

That is, we search over thek ending words for the best word to go
into node&[a]b,d . The value ofs and the timet are then associated
and carried along with node&[a]b,d during its duration. At some
t1 frames later, with an exit scores0, &[a]b,d will activate a[b]c
anda[d]e with the products

u = arg max1�i�kf�
t
i � Pr(a[b]cjwi)g �

s0

s

and

v = arg max1�i�kf�
t
i � Pr(a[d]ejwi)g �

s0

s

respectively. Note that, we still search over the samek ending words
at timet, but we might possibly select a different preceding word.
Botha[b]c anda[d]e carry along with them the timet, and the val-
uesu andv respectively. Note that the divisions0=s in effect takes
out the temporary composite set bigramPr(&[a]b;djwi) used in
the preceding node. This is the case sinces0 is the product ofs and
the acoustic score for node&[a]b,d from timet to timet+ t1.

Then after somet2 frames later, assume that nodea[b]c ends with
an exit scoreu0. In turn, a[b]c will activateb[c]& andb[c]d with
the products

p = arg max1�i�kf�
t
i � Pr(b[c]&jwi)g �

u0

u

and

q = arg max1�i�kf�
t
i � Pr(b[c]djwi)g �

u0

u

respectively. Again, we still search over the same set of thek ending
words.

Recall that by the design of the phonetic tree, the composite set
associated with the node representing the last phoneme of the
word is a singleton set. So, for nodeb[c]& , Pr(b[c]&jwi) =



Pr(fabcgjwi) = Pr(abcjwi). Consequently, the search algorithm
really uses a true word bigram language model when it reaches the
last phoneme of the word. All other set bigrams used for the in-
terior nodes could be considered as partial or temporary language
model scores. The gradual amortization of the language model
score makes pruning much more efficient and robust.

Eventually, nodeb[c]& will end, say att3 frames later, and the
search will cycle back to the propagation mentioned in Equation 1
for the root node of the phonetic tree with a new value�t+t1+t2+t3

abc .
As reflected in Equation 1, the word bigramPr(b[c]&jwi) is not
taken out (as those composite set bigrams at the interior nodes are,
through the divisions0=s andu0=u, etc...).

In general, the propagation of theories on this phonetic tree is quite
similar to that of a beam search on a linear lexicon, except for the
addition of the adjustment of the composite set bigrams when ap-
proaching a phoneme node: To activate a node, we temporarily use
some composite bigram probability; to leave that node, we remove
that temporary bigram probability. The closer the search approaches
the end of the word, it uses a more complete bigram probability. At
the very last phoneme of the word, the search actually uses the word
bigram language score.

5.1. Normalized Forward-Backward

As described in [2], the only goal of this fast-match is to keep the
likely word endings and their partial scores to guide the second pass.
This can be simply done by maintaining a list of words ending at
each frame and their partial scores. At each time frame, we record
the score of the final state of each word ending. Let
t be the set of
words ending at timet, and�t

wi
be the partial path score up to word

wi at time t. Each�t
wi

represents the probability of the speech
from the beginning of the utterance up to timet given the most
likely word sequence ending with wordwi times the probability of
the language model for that word sequence.

As described in [7] and [8], the second backward pass is essentially
the time-synchronous beam search. When some wordw ends at
some timet with a partial score�t

w (� is similar to� in the forward
pass but from the end of the utterance up tow), instead of activating
the whole lexicon as in the linear lexicon beam search, we only acti-
vate those wordswi 2 
t�1 if they satisfy the following condition:

�t�1
wi

max�t�1
�

�t
w

max�t
� Pr(wijw;wj) > 


wherewj is the best ‘preceding’ word ofw, and
 is the forward-
backward pruning threshold.

5.2. Admissibility

The fast-match algorithm is clearly not admissible in a strict sense.
We typically use a PTM model with 256 Gaussians per codebook
in this fast-match pass. To see if we could improve the final recog-
nition accuracy by using better models for the fast-match, we did
several experiments with more Gaussians per PTM codebook, or
even an STM model. It was interesting to find out that these better
models never improved the final recognition accuracy. So we de-

cided to measure the maximum loss caused by the fast-match. As
reported in [9], we have recently developedmetering toolsto mea-
sure the upper-bound loss to each pass. The metering tool ensured
that all the correct words of the sentences were saved in the region
of their correct boundaries. By doing so, the final recognition word
error rate improved only by an absolute0:1% for a typical test with
word error rate of30%. This shows that although the best result
from the fast-match is not as accurate as the full search, it never
causes increased error for the second pass.

5.3. Efficiency Issues

It is possible to make the fast-match run as fast as possible provided
that it can save sufficiently good words ending at each frame for the
second pass. We typically save about 100 words per frame. The first
thing that can speed up the search is to minimizek in Equation 1
(This also helps all the other arg max1�i�k�

t
i::: evaluation as well).

Right after saving thesek words to guide the second pass later, this
list can be truncated to leave only a few high-score words. Empiri-
cally, we observed that for a 20000-word demo system,k can be 4
or 5.

Another part of the computation that takes a long time is the ac-
cess to the bigram probabilities, since these are normally stored in a
compact representation. To avoid this, we establish a bigram cache
for a few active states (ending words). For each of these states, we
have a random access array of all of the bigram probabilities.

We can also save computation by not evaluating arg max1�i�kf�
t
i�

Pr(a new destination nodejwi)g when the set id of the new desti-
nation node is the same as that of the source node. Instead, we use
the same result evaluated when going into the source node before.
This can be detected easily by checking if there is only one out arc
from the source node. This is true since, from the design of the pho-
netic tree, if there is only one out arc at a node, the destination node
has the same set id as the source node.

6. COMPUTATION VERSUS
VOCABULARY SIZE

To learn how the computation of this search strategy (fast-match fol-
lowed by a trigram Forward-Backward beam search [8]) grows with
vocabulary size, we measured the computation required at three dif-
ferent vocabulary sizes: 1500 words, 5000 words, and 20000 words.
The time required, as a fraction of real time, is shown plotted against
the vocabulary size in Figure 2. As can be seen, the computation in-
creases very slowly with increased vocabulary.

To understand the behavior better, we plotted the same numbers on
a log-log scale in Figure 3. Here we can see that the three points
fall neatly on a straight line, leading us to the conclusion that the
computation grows as a power of the vocabulary size. Solving the
equation gives us the formula

time = 0:03V 1=3

where V is the vocabulary size.

This is very encouraging, since it means that if we can decrease



0.15 0.5 2

x 10
4

0.3434

0.513

0.8143

Vocabulary

Ti
m

e 
(x

RT
)

Figure 2: Run time vs. vocabulary size, linear scale, measured on
an HP735 with 400 Meg RAM in 1993

the computation needed by a small factor, it would be feasible to
increase the vocabulary size by a larger factor, making recognition
with very large vocabularies possible.

As a matter of fact, a year later in 1994, after some code optimiza-
tion, this search strategy could run in less-than real time with a
40000 word vocabulary.

7. SUMMARY

We have described a novel fast-match algorithm based on a single
phonetic tree. There are some unique characteristics in this pro-
posed lexical tree which made it possible to use a word bigram lan-
guage model during the search without tree copying. On this pho-
netic tree, all the last phonemes of the words in the lexicon always
locate at the leaves of the tree. Each node of the tree is assigned a set
id representing a group of words which share this node. The acous-
tic phoneme models associated with the nodes are the composite
triphones where there could be more than one right context. In com-
parison to the usual triphone models, there is only a small difference
for these composite triphones: the mixture weights of the composite
triphones are the weighted average of the correspondent triphones.
We also showed the transformation of the usual word bigram lan-
guage model into a composite set bigram language model. With this
composite set bigram language model, we could apply the language
probabilities in a cumulative fashion at every phoneme node of the
word without tree copying. The search itself is quite similar to the
usual time-synchronous beam search with one addition: to activate
a node, we temporarily use some composite bigram probability; to
leave that node, we take out that temporary bigram probability. The
fast-match can run as fast as possible provided that it can save suf-
ficiently good words ending at each frame to guide the second pass.
Finally, we demonstrated that the computation required by this al-
gorithm grows as the cube root of the vocabulary size, which means
that real-time recognition with very large vocabularies is feasible.

8. ACKNOWLEDGEMENTS

This work was supported in part by the Defense Advanced Research
Projects Agency and monitored by Ft. Huachuca under contract No.

1500 5000 20000

0.3434

0.513

0.8143

Vocabulary

Ti
m

e 
(x

RT
)

Figure 3: Run time vs. vocabulary size, log-log scale, measured on
an HP735 with 400 Meg RAM in 1993

DABT63-94-C-0063. The views and findings contained in this ma-
terial are those of the authors and do not necessarily reflect the posi-
tion or policy of the Government and no official endorsement should
be inferred.

9. REFERENCES

1. Nguyen, L., Schwartz, R., et al., “Is N-Best Dead?”,Proc. of
ARPA Human Language Technology Workshop, Princeton, NJ,
Mar. 1994, Princeton, NJ., pp. 411-414.

2. Nguyen, L., Schwartz, R., “Efficient 2-Pass N-Best Decoder”,
Proc. EuroSpeech ’97, Rhodes, Greece, Sep. 1997, pp. 167-170.

3. Schwartz, R., Nguyen, L., “Single Tree Method for Gram-
mar Directed, Very Large Vocabulary Speech Recognizer”, US
Patent 5621859, Apr. 1997.

4. Ney, H., Haeb-Umbach, R., Tran, B.-H., Oerder, M., “Im-
provements in Beam Search for 10000-Word Continuous Speech
Recognition”, Proc. ICASSP ’92, San Francisco, CA., Mar.
1992, pp. I.9-12.

5. Nguyen, L., Anastasakos, T., Kubala, F., LaPre, C., Makhoul, J.,
Schwartz, R., Yuan, N., Zavaliagkos, G., Zhao, Y., “The 1994
BBN/BYBLOS Speech Recognition System”,Proc. of ARPA
Spoken Language Systems Technology Workshop, Austin, TX,
Jan. 1995, pp. 77-81.

6. Lowerre, B. T., “The Harpy Speech Recognition System”,PhD
Thesis, Carnegie-Mellon University, 1976, Pittsburgh, PA.

7. Austin, S., Schwartz, R., Placeway, P., “The Forward-Backward
Search Algorithm”,Proc. of IEEE ICASSP-91, Toronto, Canada,
May 1991, pp. 697-700.

8. Schwartz, R., Nguyen, L., Makhoul, J., “Multiple-Pass Search
Strategy”, Automatic Speech and Speaker Recognition: Ad-
vanced Topics, Kluwer Academic Publishers, Boston, 1996,
pp.429-456.

9. Davenport, J., Schwartz, R., Nguyen, L., Austin, S., Schwartz,
R., Placeway, P., “Towards a Robust Real-time Decoder”,Proc.
of IEEE ICASSP-99, Phoenix, Arizona, Mar. 1999.


