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ABSTRACT
This paper describes the improvements that resulted in
the 1998 Byblos Large Vocabulary Conversational Speech
Recognition (LVCSR) System. Salient among these im-
provements are: improved signal processing, improved Hid-
den Markov Model (HMM) topology, use of quinphone
context, introduction of diagonal speaker adapted training
(DSAT), incorporation of variance adaptation in the MLLR
framework, improvements in language modeling, increase
in lexicon size and combination of multiple systems. These
changes resulted in about a 7% absolute reduction in word
error rates on a balanced Switchboard/Callhome English test
set.

1. INTRODUCTION

The large vocabulary conversational speech recognition
(LVCSR) task consists of recognition of natural spon-
taneous speech between speakers who may or may not
be familiar with one another. This unconstrained con-
versational speech along with the resulting dysfluencies
results in much higher error rates than more constrained
tasks. Typically, on a balanced Switchboard/Callhome
English test set, word error rates (WERs) are about 40%.
The DARPA/NIST LVCSR evaluations present a common
benchmark for the evaluation of research and technology
within the LVCSR community. This paper reviews the
1998 Byblos LVCSR system which participated in the 1998
DARPA/NIST LVCSR evaluation.

First, we give a brief overview of the Byblos system and
the various data sets used in training and testing of the sys-
tem. Following this we review various experiments that re-
sulted in improved performance over the 1997 system [13].
These improvements include our efforts to improve signal
processing, acoustic and language modeling. Also we de-
scribe our experiences with the ROVER system combination
algorithm [3].
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2. SYSTEM DESCRIPTION

2.1. Signal Processing

The September 1998 LVCSR system uses a single, 45-
dimensional feature stream. Features are extracted from
overlapping frames of audio data, each 25ms long, at a rate
of 100 frames per second. Each frame is windowed with a
Hamming window, and an LPC smoothed, VTL warped log
power spectrum is computed for the frequency band 125-
3750 Hz. From this, 14 Mel-warped cepstral coefficients
are computed. We use a gender-dependent, 128 term Gaus-
sian mixture model, to compute a maximum-likelihoodVTL
warp parameter [12, 13]. To determine gender, we use a
second Gaussian mixture to estimate a gender-independent
VTL warp, and decide gender by thresholding this estimated
stretch. The mean cepstrum and peak energy of each con-
versation is removed non-causally from the appropriate sub-
vector. In addition, the feature vectors are scaled and trans-
lated so that, for each conversation side, the data has zero
mean and unit variance. These base cepstral features with
their first and second derivatives, together with the zeroth,
first, and second derivatives of frame energy, compose the
final 45-dimensional feature vector.

2.2. Acoustic Modeling

The acoustic feature stream is modeled in a gender-
dependent manner with two pairs of HMM’s, one pair for
unadapted decoding and one pair for adapted decoding.
Preliminary decoding passes use a phonetic tied-mixture
(PTM) model, while the final decoding pass uses a state-
clustered tied-mixture (SCTM) model. In both models, the
atomic HMM is a 5-state chain with a minimum duration
of 2 frames, and an output distribution that is a mixture of
diagonal Gaussians (512 Gaussians per mixture in the PTM
system, 80 per mixture in the SCTM system). Clustering is
employed so that different HMM states may share the same
distribution or the same codebook. The PTM system has
53 codebooks and 12,000 distributions, while the SCTM
system has 3000 codebooks and 25,000 distributions. Both



the speaker-independent (SI) PTM and SCTM models are
trained on 136 hours of Switchboard data and 15 hours of
Callhome data.

The speaker-adapted models (SA), used in adapted de-
coding, are created by estimating for each training speaker
a set of 256 diagonal transformation matrices; the compo-
nents of each matrix are chosen so as to maximize an aux-
iliary function calculated during a prior forward-backward
pass, as dictated by the EM algorithm. Once the transfor-
mation matrices are estimated for all speakers, the means
and variances of the SA model are re-estimated to further
improve the auxiliary function. This entire procedure is re-
peated three times to generate the final SA model [9, 1]. The
same 151 hours of raw audio data is used for both the SI and
the SA training.

2.3. Language Modeling and Recognition Lexicon

Two grammars are used at various phases of recognition. To
create the lattice and N-best list, we use a trigram grammar
on 35K words.

This grammar is trained from (i) all conversations of the
Callhome English data (0.3 million words) (ii) all of the
Switchboard data (3.1 million words), with the exception
of the 1995, 1996 and 1997 evaluation sets, and (iii) 141M
words of CNN with each article weighted by its similarity to
the Switchboard and Callhome training. The second gram-
mar is used for rescoring the N-best list (the scores from the
grammar are interpolated to generate the final ordering of the
list). The grammar uses a part of speech (POS) smoothing
mechanism to interpolate the CNN data to the Switchboard
and Callhome training data [6].

The lexicon comprises all non-name words seen in the
Callhome data, together with all words seen in the Switch-
board data, with the exception of the 1995, 1996 and 1997
evaluation sets, plus 10K additional words selected from the
CNN data most similar to Switchboard.

2.4. Recognition

Decoding is done in five steps: (a) a speaker’s gender and
VTL parameter are estimated with Gaussian mixture mod-
els; (b) transcriptions are generated with the SI models; (c)
MLLR adaptation mean and variance parameters are com-
puted from these (errorful) transcriptions; (d) new N-best
transcriptions are generated with adapted SA models; (e)
more powerful language models are applied to rescore the
N-best list and yield the 1-best transcription.

2.5. Data Sets

The various systems presented here were trained on one
of two data sets. The first, Minitrain97, is a gender bal-
anced 20 hour subset of the Switchboard corpus. The sec-

ond, Evaltrain98 is composed of the entire Switchboard cor-
pus and the Callhome English corpus. All systems were
tested on a gender balanced subset of the 1997 Switchboard-
II/Callhome evaluation test set.

3. EXPERIMENTS IN LVCSR

3.1. Vocal Tract Length Normalization (VTLN) and Sig-
nal Processing

VTLN is a transformation based on the premise that a sin-
gular reason for speaker feature variability is the differing
vocal tract lengths of speakers. Differences in vocal tract
length result in an apparent expansion or compression of the
frequency axis as observed in formant trajectories. VTLN
seeks to compensate for this variation in formant location
by a warp of the frequency axis such that formant locations
remain stationary across speakers. Last year, we had pre-
sented a maximum-likelihood VTLN (ML-VTLN) [12, 13]
that was a significant improvement over our earlier formant
based VTLN approach. The ML-VTLN approach uses a
Gaussian mixture model (GMM) against which speakers
were scored at a multiplicity of warps. The warp that scored
the highest likelihood was then taken to be the VTLN stretch
factor for that speaker. One deficiency of this approach is
that the GMM shows an inherent likelihood bias for cepstra
at different warps. To compensate for this effect the deter-
minant of the VTL transformation is estimated empirically
per speaker and applied.

Also, to compensate for the variation in the dynamic
range of the cepstral variance across speakers, the cepstra
were normalized to unit variance on a per speaker basis
in addition to the a per speaker based non-causal cepstral
means subtraction.

Table 1 summarizes the various VTLN and signal pro-
cessing experiments. These improvements together resulted
in a overall 1.4% absolute reduction in WER.

System Frontend WER
ML-VTLN (initial baseline) 54.33
w/ variance normalization (baseline)53.68
+ global bias removal 53.18
+ per speaker bias removal 52.93

Table 1: WERs for VTLN and signal processing experi-
ments on Minitrain97.

3.2. Acoustic Modeling

We experimented with several ideas to improve acoustic
modeling within our system: The HMM topology was
changed to allow for a minimum of two frames compared



to the minimum of three before. This year we have adapted
quinphones as our context in our SCTM models. We have
found that in small training data sets, quinphones models do
not provide any additional advantage over triphone models.
This is most likely due to the manner in which contemporary
HMM systems are trained with tied clusters. To elaborate:
consider a data set where one has determined that “X” clus-
ters are appropriate based on the available training data size.
If “X” is small the clusters are most likely to be triphone
based despite the allowance for longer quinphone context.
In fact for our small data set (Minitrain97), less than 1%
of the resulting clusters used quinphone context. However
moving to quinphones on a sufficiently large corpus such
as the entire switchboard corpus, significantly improves the
performance of the system as is evident from results sum-
marized in Table 2.

System WER
Baseline (triphone) 48.35
+ min. 2-frame HMM topology 47.94
+ quinphones 46.61

Table 2: Experiments HMM topology and quinphones on
Evaltrain98.

An addition to the Byblos system this year was the use
of diagonal transformations in Speaker Adaptive Training
(SAT). Previously Byblos made use of full-matrix adaptive
training [9, 1]. This year we employed diagonal transforma-
tion matrices. We found that a 9 level regression class tree
with diagonal matrices yielded performance almost equal to
a 3 level deep tree with full matrixes (0.1% WER degra-
dation). But diagonal matrices commute in such a way as
to allow transformations to effectively take place in feature
space. This permits a much less expensive implementa-
tion of SAT. Another possible approach would have been
to employ ‘constrained model space’ SAT as proposed by
Gales [4], which is more efficient than our traditional SAT
for similar reasons.

MLLR Variance adaptation [4] also made its first ap-
pearance in Byblos this year. We employed diagonal trans-
formations using a 3-level deep regression class tree which
matched the regression classes used for MLLR means adap-
tation. It is possible to employ a deeper regression class
tree for variances, but we were unable to profit by doing so.
Diagonal variance adaptation is exceedingly easy to imple-
ment, and provided a 0.5% absolute reduction in WER.

3.3. Language modeling and Recognition Lexicon

Lexicons and language models can be improved by combin-
ing the sparse domain-dependent text with large amounts
of out-of-domain data [8]. In the 1998 Byblos system, we

System WER
SAT (3-level) +MLLR mean adapted 47.91
SAT (3-level) +MLLR mean and variance adapted 47.31
DSAT (9-level) +MLLR mean and variance adapted47.44

Table 3: Experiments with DSAT and MLLR variance adap-
tation.

incorporate the Broadcast News (BN) data with existing
Switchboard and Callhome training text to: (i) improve the
lexicon by reducing out-of-vocabulary (OOV) rates, and (ii)
improve both the decoding and rescoringn-gram language
models.

Typically, multiple recognition errors can be corrected
for each OOV word recognized correctly, so it is useful to
expand the recognition lexicon to reduce OOV rates. How-
ever, large lexicons also increase word confusability and
recognition search costs, so it is important to choose the
added words carefully. In this year’s system we select words
after pooling similarity weighted multi-domain data [7, 8] to
both replace the infrequently observed words in the existing
lexicon and expand the lexicon beyond the words observed
in the domain-dependent training.

Similarity-weighted multi-domain text is used to es-
timate the decodingn-gram language models, providing
improved training for existing and new words in the ex-
panded lexicon. In addition, we use a more powerful lan-
guage model, specifically a variation of a part-of-speech
(POS) grammar that smooths multi-domainn-gram distri-
butions [6, 8], to rescore N-best lists and yield the 1-best
transcription. Interpolation weights used in the POS gram-
mar are estimated on held-out in-domain Switchboard and
Callhome training text.

Table 3.3 reports lexicon and language modeling gains
obtained from using the multi-domain text. Three language
models are referred to in Table 3.3: (i) M0 refers to a regular
trigram language model trained only with the Switchboard
and Callhome training text, (ii) M1 refers to a similarity-
weighted trigram language model trained with added BN
data, and (iii) M2 refers to the POS-smoothed grammar us-
ing word and POSn-gram distributions from all three do-
mains.

3.4. System Combination via ROVER

Among the more interesting developments in LVCSR tech-
nology is Fiscus’ ROVER algorithm [3] for system combi-
nation. ROVER is an algorithm whereby multiple systems
can be combined to yield WERs lower than any of the con-
stituent systems alone. We have improved on the original
mechanism with the addition of a weighted selection proce-
dure which is optimized to reduce WER. The key to large



Lexicon Size Model OOV Rate (%) WER (%)

25 K M0 2.7 47.9
35 K M0 2.1 48.3
35 K M1 2.1 46.6
35 K + M2 2.1 46.1

Table 4: Lexicon and language modeling gains for the By-
blos98 system on an in-house development test set. “+” in-
dicates model used for rescoring Nbest from the system de-
scribed in the previous line.

reductions in WER with ROVER is the presence of systems
with similar WERs but with dissimilar errors. In our exper-
iments we have realized the greatest reduction in WER by
combining the quinphone system output for test set analysis
at three different frame rates (80,100 and 125 frames/sec)
along with the corresponding triphone system. A weighted
combination of these systems resulted in an overall 1.2%
absolute reduction in WER.

System WER
Quinphone, 80fps (qph-80) 48.75
Quinphone, 100fps (qph-100) 47.14
Quinphone, 125fps (qph-125) 49.20
Triphone, 100fps (tph-100) 47.86
ROVER with qph-80,100,125 and tph-10046.10
Weighted ROVER with these four systems45.90

Table 5: System combination with modified ROVER
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