AN ADAPTIVE BLOCK-MATCHING ALGORITHM FOR
MOTION ESTIMATION

Vasily G. Moshnyaga

Department of Electronics and Computer Science, Fukuoka University
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, JAPAN

ABSTRACT

A new adaptive algorithm for the block matching mo-
tion estimation is presented. The algorithm works in the
full-search fashion but unlike the FSBMA it adjusts the
number of computations dynamically to picture variation.
Due to incorporated mechanism of data-driven threshold-
ing, the proposed approach performs as four times as less
operations comparing to the FSBMA while maintaining the
same quality of results. Its hardware implementation is sim-
ple and compact. A supportive hardware design as well as
simulation results on benchmarks are outlined.

1. INTRODUCTION
1.1. Motivation

Motion estimation is a basic bandwidth compression task
utilized in video-coding systems. Among various computa-
tion methods[1], the Full Search Block Matching Algorithm
(FSBMA) is most popular. Having successive video frames
divided into blocks of (N x N) pixels, the FSBMA deter-
mines a motion vector (v) for every reference block (X) of
the current image by comparing it with all candidate blocks
(Y(0,0),Y(0,1), ...,) within the search area surrounding the
position of the reference block in the previous frame. Let
#(%,7) be the luminance value of the reference block pixel,
y(2, 7) the luminance value of the candidate block pixel, p
the maximum displacement allowed in both vertical and
horizontal directions. Then, the position (m, n) of a candi-
date block Y(m, n) that results in the minimum distortion
D denotes the motion vector v:

N—-1N-1
D(m,n) = > > yli+m,j+n)— (i),
1=0 j=0
-p<mn<p-1 (1)
v = arg min D(m,n) (2)

—p<m,n<p—1

The FSBMA provides optimal precision, regular data flow
as well as higher parallelism, a characteristic that is ad-
vantageous for VLSI implementation. However, it is ex-
tremely time consuming because N2 x (2 ><p)2 computations
of the distortion (D) have to be performed per each refer-
ence block. If a frame has 720x480 pixels, p =16, N = 16
(MPEG2, MP@QML complexity level), the FSBMA requires
over 11 GOPS.

Due to such an enormous computational rate, existing
hardware implementations of the FSBMA[2] are extremely

power hungry: over a half of energy dissipated in a mod-
ern encoder is burned in the motion estimation hardware!
As result, algorithms and architectures which ensure low
power operation have become very important, especially for
portable video application.

1.2. Related research

Over the years, a large variety of fast and computationally
inexpensive block-matching algorithms have been proposed.
Examples include the 2D-logarithm search[3], the three-step
search[4] and its modification[5], the conjugate direction
search [6], the cross-search[7], etc. These algorithms search
only a small subset of available candidate blocks and con-
sequently execute less computations. However, they lack in
terms of Peak Signal to Noise Ratio (PSNR), i.e. subjec-
tive picture resolution. Therefore, recent research attempts
have been put on decreasing the operational complexity of
the FSBMA.

An approach to reduce the FBM A complexity is to trans-
form the 8-bit gray-scale data into binary numbers and then
use binary level distortion metric instead of multi-bit arith-
metic, as proposed in [8],[9]. This approach, as well as the
LSB-bit truncation scheme[10], minimizes the amount of
energy dissipating switches during the distortion calcula-
tion. However, it does not affect the amount of operations
involved in the FSBMA. To lower the number of operations
in the FSBMA, work [11] suggest the dynamic search range
adjustment to the picture content variation. The idea is to
run the FSBMA using a large p over a number of frames and
then shrink p, if possible, to accommodate 95% of motion
vectors. The technique achieves a quadratic reduction in
operations but restricts itself to the highly correlated video
sequences. Moreover, it challenges the FSBMA’s optimality
which is not acceptable. Up to our knowledge there have
been reported only one method[12] capable of reducing the
FSBMA complexity without sacrificing its accuracy. Be-
fore computing the exact distortion, the method performs
a conservative estimation of the distortion value. If the es-
timate is larger than the minimum distortion found so far,
the exact distortion value is not calculated and the corre-
sponding computations not performed. The approach can
halve the computational count, but at the cost of extra large
hardware overhead.

1.3. Contribution

In this paper, we propose a novel algorithm for adaptive
elimination of unnecessary computations in the full-search
block matching. In contrast to FSBMA, we dynamically

| | | |
..................... OB A e
2501 T
— Football
E 200 — Tennis I
o
% 1504 r
o
o 100 L
<
= 504 L
f f f f
0 20 40 60 80
Frame #

Figure 1. MAD per pixel of the motion compen-
sated frames produced by FSBMA for the first 90
frames of the ‘Tennis’ and ‘Football’ sequences

adjust the number of computations required per block to
the picture content. Comparing to the FSBMA/ the pro-
posed algorithm performs as less as 1/4 of the total number
of operations while maintaining the highest level of PSNR.
Unlike the related research[12], our algorithm does not re-
quire a large number of extra computations to eliminate
the redundant search candidates. Also it is more compact
in implementation.

2. ADAPTIVE FSBMA
2.1. Main idea

Figure 1 shows the number of displacement computations
per pixel obtained for 90 frames of two video sequences
‘Tennis’(10-s segment) and ‘Football’(7 segment) for the
MPEG2, MP@QMIL complexity. As it indicates, the picture
content significantly varies with frames, i.e. in time. The
FSBMA, however, does not take it into account, executing
the fixed maximum of MAD-operations per pixel, block and
frame. (see the dotted line). In order to increase the effi-
ciency of the FSBM A, we propose to adjust dynamically the
number of computations to the picture content variation.
Namely, if the picture is changing slowly, i.e. the number of
motion vectors is small, the total number of computations
should be low. From the other hand, when the picture mo-
tion is large an extra amount of computations has to be
performed in order to preserve the quality of the results.

As stated in Equations (1) and (2), the main goal of the
FSBMA is search for a candidate block which has the lowest
accumulated distortion (Dmm). Since one distortion value
is computed for each candidate block in the search area, the
minimum value, Dy, must be found from the pool (S) of
(2 x p)? candidates. Clearly, the less is the size of the pool,
the less computations necessary for the block matching.

Let D*(m,n) = Zj\;_ol ly(i + m, 5 + n) — z(1, j)| be the
partial distortion accumulated in row ¢ of block Y (m,n).
Then Eq.(1) can be rewritten as

D(m,n) = Z D' (m,n) (3)

In the standard block matching we have the following as-
sumptions: (1) the content of a block remains unchanged

B e —
=

Compute D(Y)

Figure 2. Flow-chart of the adaptive FSBMA

among the adjacent frames; (2) the pixels enter the system
in a row (or column) based fashion and (3) the accumula-
tion in Eq.(1) is done sequentially. Based on them, one can
assume a candidate block Y(m,n) with a high matching
capability to the reference block X has a small distortion
D*(m,n) at the accumulation step ¢, while a large distor-
tion D*(w,v) > D*(m,n) reflects the block Y (u,v) with a
picture pattern different to X. Consequently those candi-
dates, Y(u,v), whose distortion values D*(u,v) exceed a
given threshold T, (D*(u,v) > T), can be eliminated from
the search at the steps ¢+ 4+ 1,2 + 2, ..., with omitting all the
corresponding operations.

Figure 2 shows the flow chart of the proposed algorithm.
Starting with a reference block X, a given threshold 7" and
a full search pool S of the candidate blocks Y (u,v), it then
iteratively computes the partial distortion D'(Y") for every
candidate Y, comparing it to the threshold T' after each
iteration (z). If D'(Y) > T, the block Y is excluded from
the search pool of X. The iteration cycle for X continues
till all the pixels of the candidate blocks are processed. A
new reference block X initiates a new iteration cycle.

Figure 3 illustrates the algorithm on a simple example
of matching the 3 x 3 reference block in the 4 x 4 search
area (p = 1). For the simplicity, assume that all 6 candi-
dates block are processed in parallel and the dotted lines
show the rows processed at each step and the correspond-
ing partial distortion values. During the first iteration, the
algorithm compares the upper row of the reference block to
a corresponding upper row of all the six candidate blocks.
The candidate blocks 5 and 6 have distortions larger than
the threshold (T=5). So they are excluded from the search.

Reference Search area

block []

Reference
block data

1row

Block1 Block2 Block3
Block4 Block5 Block6

Figure 3. An illustration of the algorithm operation

Similarly, the second iteration stops computations in blocks
1 and 2 because both of them have the distortion of 10.
Thus, we have only two blocks at the final iteration, and
determine the best match in the block 4. The total number
of operations was 12 instead of 18.

2.2. The threshold modification algorithm

The basic question is how large the threshold 7" should be.
The choice of T involves a tradeoff between the quality of
the motion estimation and the computational count. When
T'is large, the number of eliminated operations is small but
the PSNR is high. Oppositely, when 7" is small, the PSNR
value is decreasing, because the number of computations is
small. For some video sequences and applications, where
picture quality highly depends on the prediction error, a
higher number of computations is preferred to achieve a
lower prediction error. Hence, the 7' should be increased.
On the other hand, for some video sequences when the pic-
ture content is more changing or the desired output PSNR
is lower, the T' can be reduced in order to achieve a larger
energy saving. In order to cope with the picture quality
requirements, we modify the threshold dynamically during
the ME.

The threshold modification algorithm works as follows.
Starting with T(X) = oo, it computes motion vectors for all
the blocks of the first frame (F1). The values of distortions,
Din corresponding to each motion vector in the frame are
then used as the thresholds, T3, (¢ = 1,2,...) for the blocks
Xi, (i = 1,2,...) of the next frame. If the threshold value
used for the current block X; are so small that all the can-
didates in .S need to be eliminated from the consideration
at a step ¢, the corresponding 7'(X) is incremented by A an
the process continues without stopping the computations at
the current step :.

2.3.

Figure 4 shows a possible implementation scheme on a lin-
ear array of PEs which broadcast current block pixels[1].
In this figure, the AD unit computes accumulated displace-
ment, the I is latch, R islatch with multiplexor, M the min-

Implementation scheme

RAM =
S STSIXG.0)y(kI) |

o=

- AD ™
i -
Ij;:l . AD

p——
%ﬁg ‘

Figure 4. An implementation of the adaptive FS-

BMA

imum computation unit. Each A} unit works individually
accumulating its own partial distortion value incrementally,
in a step-by-step fashion. After ¢-steps, the values are com-
pared to the threshold (7"). Those blocks whose distortion
values raised over the 7' are shut off, thus stopping opera-
tions. The process is repeated with selection and shut-down
of the other AD-units, if any, in every ¢ steps. Thus, only
units with the accumulated values below the threshold will
continue working while all the others stop. With a new
reference block X, all the AD-units “wake up” and begin
computing. The arithmetic cost of the method can be easily
shown to involve one comparison unit per AD-unit, one reg-

from M

Threshold
RAM

from_,,
AD ::D—’ "mux]

units

YAN L T
to AD

\ + i units

Figure 5. The threshold modification circuit

Table 1. PSNR

Video PSNR Error | Save
sequence Full | Adapt. (%) (%)
Carousel | 35.227 | 35.219 0.3 73
Football 40.338 | 38.902 0.1 76
Bicycle 39.822 | 36.590 0.8 60
Fl.garden | 37.803 | 37.610 0.5 56

ister per block to store the threshold and a simple control.
Figure 5 shows the control circuit structure. The threshold
RAM takes the minimum displacements (from M in Fig.2)
calculated for each block in the current frame and outputs
them as the block thresholds for the next frame. Since one
threshold is used per block, the required capacity of the
threshold RAM is M1 x M2/N?, where M1 and M2 are
the frame sizes, respectively. For the MPQML level it is
only 1350 words.

3. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on the following
video sequences: Carousel, Football, Bicycle, Flow Garden,
picture size: 352x 240. In each video sequence, the refer-
ence frame is the first frame (001); three search frames are
002,003 and 004. Table 1 lists the Peak Signal to Noise Ra-
tio for the conventional FSBMA and the adaptive FSBMA,
the average error picture and the percentage of operations
saved do to adaptive processing. Note that the error image
is very low (less than 1%) while the amount of computa-
tions was reduced to 1/4 of the traditional FSBMA. Table
2 outlines the effect of N and p on the results for the Foot-
ball benchmark. As we expected, the larger p the larger is
saving factor.

4. CONCLUSIONS

We presented a new algorithm that effectively reduces the
number of operations in full-search block-matching motion
estimation without sacrificing the quality of the results.
Due to adaptive adjustment of computations to the picture

Table 2. Number of operations per frame as a func-
tion of N and p (Football, Picture size: 352x240)

N | p No.operations Save | Error
Full | Adapt. (%) (%)
8 | 8 | 20,504,640 | 7,005,512 | 66 0.3
8 16 | 81.870,912 | 24,644,032 70 0.4
16 | 8 | 19,411,200 | 6,480,352 | 65 0.7
16 | 16 | 77,357,312 | 22,217,167 | 72 0.8

variation, the algorithm is able to save up to 3/4 of the total
operations required by the FSBMA while preserving high
quality of the results. Future research will be dedicated to
a detailed hardware design.

REFERENCES

[1] M.Sung, “Algorithms and VLSI architectures for motion
estimation”, VLSI Implementations for Image Communi-
cations, P.Pirsch (Ed.), 1993, pp.251-2281.

[2] M.Yoshimoto, et al., “ULSI realization of MPEG2 Real-
time Video Encoder and Decoder - An Overview”, TE-
ICE Trans.Electron., Vol.E78-C, No.12, pp.1668-1681, Dec.
1995.

[3] J.Jain, and A.Jain, “Displacement measurement and its ap-
plication in internal image coding”, IEEE Trans. Commun.,
vol.29, No.12, pp.1799-1808, 1981.

[4] T.Koga, K.Linuma, A.Hirano, Y.Lijima and T.Ishiguro,
“Motion-compensated interframe coding for video confer-
encing”, Proc. NTC’81, pp.G5.3.1-G5.3.5, 1981.

[5] H.Jong, L.Chen, and T.Chieuh, “Accuracy improvement
and cost reduction of 3-step search block matching algo-
rithm for video coding”, IEEE Trans. Circuits Syst. Video
technol., vol.4, no.1, pp.88-91, Jan. 1994.

[6] R.Srinivasan and K.Rao, “Predictive coding based on effi-
cient motion estimation”, IEEE Trans. Commun., vol.38,
No.9, pp.950-953, 1990.

[7] M.Ghanbari, “The cross-search algorithm for motion esti-
mation”, IEEE Trans. Commun., vol.38, No.9, pp.950-953,
1990.

[8] M.Mizuki, U.Desai, I.Masaki, and A.Chandrakasan, “A bi-
nary block matching architecture with reduced power con-
sumption”, IEEE ICASSP’96, vol.6, pp.3248-3251, 1996.

[9] B.Natarajan, V.Bhaskaran, and K.Konstantinides, “Low
complexity block-based motion estimation via one-bit trans-
form”, IEEE Trans. Circuits Syst. Video technol., vol.7,
no.4, pp.702-706, Aug.1997.

[10] Z-L.He, K-K.Chan, C-Y.Tsui, and M.L.Liou, “Low-Power
Motion Estimation Design Using Adaptive Pixel Truncation

" IEEE ISLPD’97, 1997.

[11] S.Park and W.Burleson, “Reconfiguration for power saving
in real-time motion estimation”, IEEE ICASSP’98, vol.5,
Pp.3037-3040, 1998.

[12] V.L.Do and K.Y.Yun, “A low-power VLSI architecture
for fuul-search block matching motion estimation”, IFEE
Trans. CAS for Video Technology, Vol.8, No.4, Aug. 1998,
Pp.393-398.

