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ABSTRACT

This paper describes the implementation of a waveform-
based global dynamic model with the goal of capturing
vocal folds variability. The residue extracted from speech
by inverse filtering is pre-processed to remove phoneme-
dependence and is used as the input time series to the
dynamic model. After training, the dynamic model is
seeded with a point from the trajectory of the time series,
and iterated to produce the synthetic excitation waveform.
The output of the dynamic model is compared with the
input time series. These comparisons confirmed that the
dynamic model had captured the variability in the residue.
The output of the dynamic models is used to synthesize
speech using a pitch-synchronous speech synthesizer, and
the output is observed to be close to natural speech. 

1. INTRODUCTION

    Naturalness of synthetic speech is dependent upon how
well the voiced excitation is modeled [12]. Present day
speech synthesizers approximate the voiced excitation by
periodic functions of time, leading to a poor quality of
synthetic speech, because the naturalness of speech
depends primarily on the variations in the period of the
excitation (jitter), [12 which is lost when periodic approxi-
mations are made. Hence, there exists a need for a model
of the vocal folds that can approximate the glottal flow
dynamics more closely. 

Existing models of the vocal folds are based on analyzing
anatomical and physiological features of the vocal folds
and creating mechanical and electrical equivalents that
mimic the workings of the vocal folds as closely as possi-
ble. Research has shown that the variations exhibited by
the glottal flow waveform are chaotic rather than random
[9]. The objective of this research is to use techniques
developed for dynamic modeling [2], [7] and apply them

to the synthesis of naturally sounding speech. In this paper
we only address the synthesis of voiced speech.

2. DYNAMIC MODELING

Dynamic modeling [4] is defined as the identification of

the mapping  that describes an unknown
dynamical system of dimensionality d that produced the
time series under analysis. The motivation behind this pro-
cedure is to obtain an input-output model for a time series,
without the need for a detailed mathematical analysis of
the dynamics underlying the time series generation. [2]
The major difference between dynamic modeling and clas-
sical time series modeling is that in dynamic modeling the
system is assumed autonomous. In other words, we seek a
nonlinear oscillator which captures the complexity of the
time series through nonlinear interactions [4]. A detailed
mathematical background of dynamic modeling can be
found in references [2], [4] and [11].

Dynamic modeling comprises two distinct components
[2]. The first step is to transform the observed time series
into a trajectory, according to Takens’ embedding theorem
[8]. Here we utilized a delay embedding of size 30 with a τ
= 3. The next step is to model the trajectory either with
global or local models.   

Similar to linear modeling, the objective of dynamic mod-
eling is to minimize the mean squared value of the error
between the predicted output of the model and the desired
response (which is the time series advanced by one step).

The minimization can be done in two ways: [11]
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In global dynamic modeling, all the points in the recon-
struction space are approximated by a single global predic-
tive map f(.). 

In local dynamic modeling, the predictive map is com-
posed of R local maps, with each one of the R maps fitting
only the neighbors of the current point in the reconstruc-
tion space. The complete map then is the union of all the R

maps .

After training, the dynamic model is seeded with a point
from the trajectory of the input time series and its output is
the predicted value of the next point in the time series. The
predicted output is fed back to the input of the model and
the model is iterated autonomously (oscillator). If the
dynamic invariants of the synthesized time series coincide
with the original, then the model is said to have captured
the dynamics of the system that produced the time series
[4]. Here we will be comparing the quality of the dynamic
modeling by means of the spectrum of the original and
synthesized time series, as well as their jitter.

3. INVERSE FILTERING AND PROCESSING OF
THE RESIDUE

 The input time series to the dynamic model is the glottal
flow or excitation waveform, which is obtained from digi-
tized speech (10 KHz, 12 bits) by inverse filtering using
linear predictive modeling [5]. The speech signal to be
analyzed is divided into 256 samples frames, and for each
frame short-term LPC analysis (14 order model) is done to
compute the coefficients. The error signal from each frame
is determined and stored. The inverse filtering is done
pitch synchronously to improve performance [12]. The
residual waveform has a lot of high frequency components
with an amplitude that tends to be phoneme dependent.
However in dynamic modeling of the excitation, the
objective is to obtain an output from the model that can be
used to synthesize any phoneme, which implies that the
input to the model should be phoneme-independent.

To accomplish this, the residue obtained by inverse filter-
ing is subjected to a two step processing. The residue is
first low pass filtered to remove some of the noise and
high-frequency components that would complicate
dynamic modeling.   The cut-off frequency of the filter
used is fixed at 1KHz as a compromise between simplicity
and jitter preservation. A digital Butterworth filter [8] of
order 6 is used for the low-pass filtering. The filter
selected had almost linear phase.

The next step is to normalize the residue so that it has a
uniform amplitude envelope. This is also done pitch syn-
chronously. The filtered residue is segmented, and the
minimum amplitude in each segment is determined. The
minimum is subtracted from the samples in each segment
and each segment is normalized by the maximum. This
leads to the residue having flat amplitude envelope on the
positive and negative sides. 

Jitter is calculated as the difference in samples between the
current period and the mean period (using a peak picking
algorithm). Quantification of the jitter in the original and
filtered waveforms verified that the variability of the origi-
nal residue is reduced but not lost due to the low-pass fil-
tering. Histograms of the jitter in the original and the
amplitude normalized and filtered residue waveforms for
the vowel “o” are shown in Figure 1. From the values for
the variance, shown in table 1, it is clear that there is mini-
mal loss of variability due to the filtering and normaliza-
tion operations.

4. IMPLEMENTATION AND RESULTS

Implementation of the Global model

A Time-Delay Neural Network (TDNN) with global feed-
back [4], trained as a one step predictor, is implemented on
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TABLE 1. Jitter in original and normalized residues

Original 
Residue

Normalized 
Residue

Mean 3.9e-14 -1.6e-12
Variance 0.913 0.7906

Figure 1 Histograms of jitter (in samples) obtained from 
the original and filtered residues.
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NeuroSolutions, an object-oriented icon based simulator
for neural networks [3]. The TDNN topology included a
30 tap delay line at the input with a delay of 3 between
taps (implementing the embedding), and two hidden layers
of 15 and 10 sigmoidal PEs. The first hidden layer PEs
were augmented with a delay line with 5 taps and a delay
of 5. The output PE was linear and its output was fed back
to the input through a switch to implement the Teacher
Forcing procedure [1]. The network was trained using
Back Propagation Through Time (BPTT) [1]. A step size
of 0.6 and a momentum constant of 0.5 were used to train
the network. The percentage of output samples fed back to
the output through Teacher Forcing was scheduled during
learning. Initially, the network was trained completely
with the input time series. After every 20 epochs of train-
ing, the percentage of samples per exemplar fed back from
the output to the input was bumped up by 10%.   The net-
work was trained for 200 passes through the input data,
which consisted of about 1500 samples of the filtered and
normalized residue, and the error stabilized at 0.005. The
trained data was the residue from a single speech segment
of a male speaker voicing the vowel “o”.

Results

The output from the network in autonomous mode (i.e. as
an oscillator) resembles the original time series exactly in
shape (Figure 2). The spectra of the original time series
and the network output are similar, indicating that the long
term time structure had been captured. Figure 3 shows a
zoomed version of the 256 sample FFT of the original and
synthesized time series.

The distributions of jitter in the original residue and the
output of the network are compared using an histogram
and statistics. Table II compares the mean and variance of

the original and synthesized time series which shows that
the variance is very similar. 

Another consideration in dynamic modeling is the stability
of the model. A stable model implies that the quality of the
output will not degrade over time. The stability of this
non-linear oscillator can be confirmed by comparing the
jitter plots of two one thousand point segments from the
output time series of the oscillator. The first segment is
from the beginning of the synthesis, and the next segment
is chosen from the same time series after 50,000 points
have elapsed. The two histograms are identical, indicating
the stability of the oscillator (figure 4). 

Synthesis of speech using the output of the network

An entire voiced sentence 'We were away a year ago' was
chosen for synthesis. The LPC coefficients and gain for
each segment were computed using the autocorrelation
method. The sentence was segmented pitch synchronously
to obtain the model parameters. The output from the glo-
bal dynamic model trained with a single voiced phoneme
as described above was used as the excitation to this LPC
model. A segment of the excitation was synchronized with
each speech segment. Care was taken to ensure that the

Figure 2. Original and synthetized voiced excitation

TABLE 2. Jitter in original and synthesized signals

Original 
Residue

Normalized 
Residue

Mean -1.6e-12 5.4e-12
Variance 0.7906 0.7566

Figure 3 A zoomed (low frequency) spectra of original tim
series and synthesized output (Hz).



peak of the excitation coincided with the start of the
speech segment. (Pitch Synchronous Analysis). The exci-
tation segment was scaled by the gain and passed through
the LPC model to obtain the speech output for the seg-
ment.

Listening tests showed that the quality of synthesized
speech is very close to the original speech signal, preserv-
ing the naturalness of speech better that the government
standard LPC-10 [10] algorithm. The synthesized speech
signals are available for listening on the World Wide Web
at the Computational NeuroEngineering Laboratory web-
site http://www.cnel.ufl.edu.

5. CONCLUSIONS

Dynamic modeling was used successfully to model the
dynamics of the vocal folds, using a waveform-based
approach. Outputs that closely resembled the original
inverse filtered residue were obtained from the model. It
was seen that the jitter distribution remained the same in
the outputs from both the models over time, indicating that
the dynamic models developed were stable autonomous
oscillators.

In spite of the fact that the neural model was trained with a
short voiced vowel, the model output was used to generate
the vocal excitation for an entire voiced sentence with very
good results. The quality of the synthetic speech was
judged of better quality than speech generated using an
impulse excitation. This indicates a possible application of
dynamic modeling in speech compression and high quality
speech synthesis. We plan to apply the same technique to
generate unvoiced excitations. 
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Figure 4. Jitter comparisons between input time series, ini-
tial part of output  and output after 50,000 generated sam-
ples.


