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ABSTRACT

This paper investigates the relative sensitivity of a GMM{
based voice veri�cation algorithm to computer voice{altered
imposters. First, a new trainable speech synthesis algorithm
based on trajectory models of the speech Line Spectral Fre-
quency (LSF) parameters is presented in order to model
the spectral characteristics of a target voice. A GMM{
based speaker veri�er is then constructed for the 138 speaker
YOHO database and shown to have an initial equal{error
rate (EER) of 1.45% for the case of casual imposter attempts
using a single combination{lock phrase test. Next, imposter
voices are automatically altered using the synthesis algo-
rithm to mimic the customer's voice. After voice transfor-
mation, the false acceptance rate is shown to increase from
1.45% to over 86% if the baseline EER threshold is left un-
modi�ed. Furthermore, at a customer false rejection rate of
25%, the false acceptance rate for the voice{altered imposter
remains as high as 34.6%.

1. INTRODUCTION

There has been considerable interest in voice veri�cation
technology over the past twenty{�ve years. Much attention
has been devoted to methods for better characterization of
the customer voice or at improving the background model
for the imposter (e.g., [1, 2]). Earlier studies by Rosenberg
and Sambur [3], for example, investigated the sensitivity of
voice veri�cation algorithms to professional trained human
mimics. That study found that the sensitivity to human
impersonation is relatively low. For example, the false ac-
ceptance rate was shown to increase from 1% (for casual
imposters) to only 4% (for professional mimics). In recent
years, however, several algorithms have been proposed for
computer{aided voice conversion (e.g., [4, 5]). While voice
conversion approaches continue to mature, it is worth estab-
lishing the current sensitivity of voice veri�cation systems to
attack by computer altered imposter voices. Therefore, this
study �rst presents a new algorithm for speaker{dependent
trainable speech synthesis and subsequently evaluates the
approach by utilizing the algorithm as a pre{processor for
the imposter voice prior to voice veri�cation.

2. TRAINABLE SPEECH SYNTHESIS:
LSF TRAJECTORY MODELING

Voice conversion techniques attempt to learn a functional
mapping between an input source voice and desired target
voice. Trainable synthesis algorithms, on the other hand,
model the target voice directly. Consequently, algorithms of
this type are also useful for text{to{speech synthesis applica-
tions. The proposed trainable synthesis algorithm (referred
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to as LSF{STM) is based on an extension of the Stochas-
tic Trajectory Model (STM) approach proposed previously
by Gong and Haton for continuous speech recognition [6, 7].
Highlights of the LSF{STM algorithm follow, and a detailed
description of the modeling strategy can be found in [8].

2.1. Speech Analysis Method

The analysis algorithm partitions speech into monophone
units and extracts trajectory representations of the observed
feature sequences. Speci�cally, speech from the target voice
is �rst partitioned at the phoneme level by an automatic
HMM{based time{alignment procedure [9]. Using a pitch
tracking algorithm, the pre{emphasized input speech is an-
alyzed pitch{synchronously during voiced excitation and at
a constant rate during unvoiced excitation [10]. At each
analysis instant, a short{time windowed waveform is ex-
tracted by applying a Hanning window centered around the
epoch location. A P th order LP analysis is then performed
(P = 10 for 8 kHz speech). The LPC vector is transformed
into a P{dimensional Line Spectral Frequency (LSF) vec-
tor [11]. Next, in order to characterize the temporal velocity
of the spectral parameters, delta{LSF (�LSF) parameters
are computed by a linear regression of the two adjacent LSF
vectors surrounding the current analysis instant. The P{
dimensional �LSF vector is appended onto the static LSF
vector resulting in an observation containing 2P elements.
An illustration of the feature extraction and trajectory

encoding process is shown in Fig. 1. Here, the time{axis
of the pitch{synchronous parameter sequence (Fig. 1B) is
resampled to Q uniformly spaced points resulting in a �nal
Q{state trajectory representation (Fig. 1C). In other words,
an observation sequence of L frames, O = fo1;o2; : : : ;oLg is
mapped to a Q{state trajectory, X = fx1;x2; : : : ;xQg. The
qth state of the trajectory contains a vector of LSF/�LSFs,

xq = [!1(q); : : : ; !P (q);�!1(q); : : : ;�!P (q)] (1)

where the jth element of xq is represented as xq[j] and !j(q)
represents the jth LSF.
Additional information is extracted for each trajectory

unit to aid in model estimation. For example, the acoustic

class of the left and right adjacent phones is used to encode
the phonetic context of each training pattern [12]. Vowels
are additionally distinguished in the training data by 3 lex-
ical stress markers (primary, secondary, or no stress).

2.2. Synthesis Trajectory Model

The synthesis model consists of a Q{state trajectory repre-
sentation. The state count is assumed �xed for all phones
(Q = 5) and the number of modeled trajectories for each
phoneme is based on the amount of available training data.
Each monophone synthesis model is comprised of a set of K



Figure 1: Illustration of trajectory characterization. In (A)
the wideband spectrogram of a hypothetical training pattern is
shown. In (B) LSF and �LSF vectors are pitch{synchronously
extracted from the waveform. Finally, in (C) the LSF and�LSF
vectors are resampled to form a Q{state trajectory.

LSF/�LSF spectral trajectories where the kth trajectory,
Tk, is described by,

1. Q mean LSF/�LSF vectors, (�qk; q = 1; : : : ; Q),

2. Q covariance matrices (�qk). The covariance matrices
are assumed to be diagonal and thus characterized by a
set of Q state{dependent LSF/�LSF variance vectors,
(�2qk; q = 1; : : : ; Q),

3. The probability of generating an observation from the
kth modeled trajectory, pk = P(Tk). The probabilities

follow the sum{to{one constraint,
PK

k=1
pk = 1.

Unlike the recognition STM formulated by Gong and Ha-
ton, the synthesis STM computes a perceptually motivated
distance between an observed training data trajectory and
a modeled trajectory. Speci�cally, the distance between
the observed trajectory X = fx1; : : : ;xQg and kth modeled
mean trajectory Tk = f�1k; : : : ; �Qkg is given by,

d(X;Tk) = �

QX
q=1

PX
j=1

cq [j] (xq[j]� �qk[j])
2 + (2)

(1��)

QX
q=1

2PX
j=P+1

cq[j�P ] (xq[j] � �qk[j])
2 :

Here, � (0 � � � 1) is used to adjust the relative contri-
butions of the static (j = 1; 2; : : : ; P ) and dynamic (j =
P +1; : : : ; 2P ) LSF parameters in the distortion function.
The jth LSF parameter weighting term for the qth modeled
state, cq [j], is based on the Inverse Harmonic Mean (IHM)
weight de�ned previously in [13] for speech coding,

cq [j] =

�
1

xq[j]� xq[j � 1]
+

1

xq[j + 1]� xq[j]

�
(3)

where xq[0] = 0 and xq[P +1] = � (assuming a P th or-
der stable LP analysis). Intuitively, since the weighting is
inversely related to the distance between neighboring LSF
parameters, mismatch in spectral peaks are weighed more
heavily than mismatch in spectral valleys.

2.3. Clustering Method

The unit clustering algorithm is based on context{dependent
monophone units with acoustic context classes previously
formulated by Ljolje and Riley [14, 12]. Given su�cient
training data, model parameters for triphone trajectories are
estimated. However, a back{o� model set of left{context,
right{context, and context{independent units are also esti-
mated. During data clustering, a training set of R observed
trajectories is extracted from various examples of a particu-
lar phoneme (i.e., Xr for r = 1; : : : ; R). The clustering phase
estimates the underlying parameters of a Q{state (synthe-
sis) STM using the Linde{Buzo{Gray (LBG) algorithm with
iterative centroid splitting,

1. Initialization : Initialize the number of modeled tra-
jectories to 1 (k = 1). For each state (q = 1; : : : ; Q),
compute the centroid mean vector �qk and diagonal co-
variance vector �2qk from the sample mean and variance
of the qth state of all available training tokens.

2. Splitting Phase : For each modeled trajectory (k =

1; : : : ; K), split the trajectory if a su�cient number of
training tokens exist. That is, the mean vector �qk is
split into �qk(1 + �) and �qk(1� �) where � = 0:2�qk .

3. Distortion Computation : Compute the distance of
each training token to the current set of modeled tra-
jectories. That is, for each training token, Xr, com-
pute d(Xr;Tk) given in Eq. 2 for (k = 1; : : : ; K; and
r = 1; : : : ; R).

4. Classi�cation : With d(Xr;Tk), assign each training
token to one of K current modeled trajectories such
that the distortion function is minimized.

5. Model Update : Update the state{dependent mean
vectors and variance terms of each modeled trajectory
using the assigned observations from Step 4. Update
the trajectory probability (pk) as the count of training
tokens assigned to the kth modeled trajectory divided
by the total number of training tokens.

6. Iterate : Repeat Steps 2{5 until a convergence criterion
is met or terminating iteration count is reached.

2.4. Model Parameter Based Synthesis

The synthesis algorithm is pitch{synchronous in nature.
During processing, the left{context and right{context acous-
tic classes of the adjacent phonemes are determined and the
most context sensitive model available is selected. Next,
since the ith phoneme model consists of K(i) possible pa-
rameter trajectories, a single trajectory must be selected to
represent the current phoneme. Following [15], this is ac-
complished by conducting a Viterbi search for the trajectory
sequence which minimizes a cost criteria. The best{path
cost is comprised of a selection cost (related to how often
the trajectory occurs in the training data) and a concate-

nation cost (related to the spectral discontinuity between
two adjacent synthesis trajectories). Details of the search
procedure and trajectory selection can be found in [8].
Once the appropriate trajectory sequence has been estab-

lished, synthetic speech can be produced by �rst convert-
ing the LSF mean vector representing the qth model state
into a corresponding LPC vector [11]. The vocal tract �lter
can then be excited by either a periodic pulse train dur-
ing voiced speech or noise{like excitation during unvoiced
speech. Since this simpli�ed excitation model leads to poor



synthetic speech quality, we have considered tying an LP
residual error waveform (extracted from the training data)
to each trajectory model state in order to further convey
speaker{dependent excitation. The tied LP residual to each
modeled state is found by searching the short{time training
data which minimizes the spectral distortion criterion given
in Eq. 2. The PSOLA [10] analysis waveforms from the seg-
ment with minimal distance are decomposed into source and
spectral envelope components. The corresponding Q{state
LP residual sequence is then assigned to model the proto-
typical excitation for each state in the trajectory.

3. SPEAKER VERIFICATION EXPERIMENTS

3.1. YOHO Corpus Partitioning

The YOHO corpus [16] consists of 138 speakers (106 male, 32
female) producing short combination{lock phrases consist-
ing of three doublets (e.g., \twenty{six, �fty{one, eighty{
seven"). The doublets range in value from 21 to 99 with the
following restrictions: (i) there are no exact decades (e.g.,
20, 30, 40), (ii) there are no double digits (e.g., 44, 55), and
(iii) there are no numbers ending in \8" (e.g., 28, 38). Be-
cause the vocabulary is restricted to doublet sequences, only
21 phonemes are present within the database.
Each speaker participated in 4 enrollment sessions consist-

ing of 24 phrases each (i.e., 4�24 = 96 enrollment phrases).
In addition, there are a total of 10 veri�cation sessions, each
of which consist of 4 phrases (i.e., 10 � 4 = 40 veri�cation
phrases). Since trajectory model estimation requires sev-
eral minutes of training data, the experimental setup used
in this section di�ers from the recommended database usage
described in [16]. Speci�cally, it is necessary to partition
the available data into three subsets to ensure open test
evaluations: (i) data for estimating the LSF{STM synthesis
units, (ii) data for estimating the GMM parameters for the
speaker veri�er, and (iii) data for imposter and customer tri-
als. Therefore, the following data partition was considered,

1. 92 of the 96 enrollment phrases for each speaker are
used to estimate the LSF{STM synthesis models.

2. 4 randomly selected enrollment phrases from each
speaker were set aside for veri�cation experiments.

3. 40 veri�cation phrases are used to train the GMM{
based speaker veri�cation algorithm.

3.2. Baseline Speaker Veri�cation Algorithm

Speaker veri�cation can be described in terms of a two{
hypothesis problem in which the veri�er must decide
whether the speech presented to the system was produced by
the customer or by an imposter. Given an input sequence of
T short{time speech feature vectors, O = fo1;o2; : : : ;oT g,
the hypothesis can be tested using the likelihood ratio,

�(O) =
p (O j H1)

p (O j H0)
=

p (O j �c)

p (O j ��c)
; (4)

where �c and ��c represent models for the customer and im-
poster respectively. Furthermore, the log{likelihood ratio
can be expressed as,

log �(O) = log p (O j �c)� log p (O j ��c) : (5)

During processing the log{likelihood ratio is compared with
a threshold, �, in order to decide hypothesis H0 or H1.
For customer distributions modeled by GMMs, the obser-
vations are assumed statistically independent, therefore the

log{likelihood of the observation sequence to the customer
model is given by,

log p (O j �c) =
1

T

TX
t=1

log p (ot j �c) : (6)

The imposter model, ��c, in this study is comprised of a
set of B background speaker models. The models include
the B=2 nearest background speakers as well as B=2 far-
thest background speakers. Thus, each speaker enrolled in
the system has a dedicated background model set. The nor-
malizing term in Eq. 5 is then given by the log of the average
likelihood across each of the background speaker models [1],

log p (O j ��c) = log

(
1

B

BX
b=1

p (O j �b)

)
: (7)

The baseline speaker veri�er was constructed in the fol-
lowing manner. First, 40 combination lock phrases found
in the veri�cation portion of the database were used to es-
timate a 32 mixture GMM for each customer (138 total).
Observations consisting of 19 MFCCs were calculated ev-
ery 10 msec and frames from silence regions were automat-
ically discarded using an energy{based speech activity de-
tector. Second, the background speaker model set was con-
structed by submitting the veri�cation phrases from each
customer to the 137 remaining GMMs. The 5 models with
the largest log{probability and 5 models with the smallest
log{probability were chosen as the near and far background
set. Therefore, each customer score is normalized using Eq. 7
by (B = 10) background speakers.
Simulations were performed to �nd the distribution of

the log{likelihood ratio output for each hypothesis (H1;H0).
Considering the customer case, 4 enrollment combination{
lock phrases were submitted to the corresponding cus-
tomer model. Since there are 138 customers, there are
(138 � 4 = 552) values of log{�(O) under hypothesis H1.
Likewise, 4 enrollment phrases from the remaining speak-
ers in the database were used for imposter trials. Note
that background speakers are excluded as imposters as sug-
gested by Campbell [16]. Consequently, there are a total of
(138� 127 � 4 = 70; 104) imposter tests for hypothesis H0.
Next, a decision threshold �, was varied to reveal a trade{
o� between false acceptance and false rejection errors. The
baseline system achieved an EER of 1.45% (� = 1:56) for
tests consisting of a single combination{lock phrase.

3.3. Voice{Altered Imposter Trials

While the false acceptance rate of the baseline system is
low (1.45%), it is interesting to now consider the sensitiv-
ity of the speaker veri�er to imposters whose speech has
been transformed into the customer's voice characteristics
prior to processing. To simulate this scenario, the proposed
LSF{STM trajectory synthesis technique is used. During
voice transformation, each combination{lock phrase is au-
tomatically segmented using an HMM{based segmenter [9].
The phoneme label sequence is obtained using a dictionary
lookup for each digit doublet. The resulting phone sequence
is submitted to the LSF{STM synthesis algorithm and a se-
quence of context{dependent LSF synthesis trajectories is
determined. The input F0 contour is left unmodi�ed, how-
ever the median F0 of the imposter is adjusted to match the
median F0 of the customer's voice using the PSOLA method.
Fig. 2 illustrates histogram plots of log{�(O) under the

di�erent hypothesis scenarios. For Fig. 2A, the distribution
of scores under hypothesis H1 (customer access) is shown.
Here, scores range in value from [+1,+6] while exhibiting an
approximately Gaussian shaped distribution about the mean



value (approximately +3). The EER threshold (� = 1:56)
is also shown as a solid line. Next, in Fig. 2B, the dis-
tribution of the log{likelihood scores under hypothesis H0
(imposter access) are shown. Here, the majority of casual
imposter attempts result in scores below the EER thresh-
old suggesting a low false acceptance rate. The tail of the
distribution is long resulting in scores ranging from -10 to
values slightly greater than +2. The peak of the imposter
distribution occurs at approximately +0.4 which is far below
the EER threshold. Finally, in Fig. 2C, it is clear that voice
alteration using LSF{STM synthesis impacts the veri�er in
3 ways,

1. The overall peak in the imposter distribution is shifted
from +0.4 to +2.2, a value above the EER threshold.

2. The range of imposter scores is reduced from approxi-
mately [-10,+2] to [0,+5]. The new distribution over-
laps the customers' distribution under hypothesis H1.

3. If the EER threshold is left unmodi�ed, a substantial
increase in false acceptance rate is noted. In fact, 86.1%
of the altered{voice imposters using the LSF{STM syn-
thesis scheme are falsely accepted by the veri�er.

By increasing the decision threshold (�), a trade{o� in
customer false rejection versus imposter false acceptance can
be determined. Table 1 summarizes the system performance
for customer false rejection rates of 5%, 10%, 25%, and 50%.
For example, at a false rejection rate of 25% (i.e., � = 2:53),
0.04% of the casual imposters and 34.6% of the voice{altered
imposters are falsely accepted by the veri�er. From this Ta-
ble, it is clear that simply increasing the decision threshold
yields an unacceptable customer false rejection rate.

FR Threshold (�) FA : (A) FA : (B)

5% 1.87 0.43 % 72.2 %

10% 2.17 0.12 % 55.5 %

25% 2.53 0.04 % 34.6 %

50% 3.00 < 0.01 % 14.2 %

Table 1: Imposter false acceptance (FA %) for a given customer
false rejection (FR %) rate. System performance is shown for
(A) false acceptance for casual imposter attempts, and (B)
false acceptance voice{altered imposter attempts.

4. DISCUSSION AND CONCLUSIONS

This paper has presented a new approach for trainable
speech synthesis based on trajectory modeling of LSF pa-
rameters. A GMM{based veri�cation algorithm was then
constructed and shown to exhibit an EER 1.45% for casual
imposter attempts. When the imposter voices are altered us-
ing the proposed synthesis algorithm, the false acceptance
rate increases to 86% if the original EER decision thresh-
old is left unmodi�ed. However, it is worth considering the
circumstances in which the results were obtained. First, syn-
thesis models were estimated from phrases spoken by each
customer. Therefore the domains of the training and testing
material were matched. Furthermore, GMM{based veri�ers
lack the capability of con�rming that the correct digit se-
quence was spoken by the imposter. However, we point out
that the intelligibility of the synthetic speech digit sequences
was found to be 99.5% in a formal listener evaluation. Fur-
thermore, an additional listener evaluation of the processed
synthetic speech con�rms the similarity of the altered im-
poster voice to the customer voice (details can be found
in [8]). Currently, we are considering conducting a more
extensive evaluation using the NIST{SRE (1998) corpus.
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Figure 2: Histogram plot of log{likelihood ratio scores, �(O),
for (A) hypothesis H1: customer access, (B) hypothesis
H0: casual imposter attempts, and for (C) hypothesis H0:
voice{altered imposter attempts.
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