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ABSTRACT

In this paper we present a new form of wavelet transform.
Unlike the continuous wavelet transform (CWT) or discrete
wavelet transform (DWT), the mother wavelet is chosen to
be a discrete-time signal and wavelet coefficients are com-
puted by correlating a given discrete-time signal with con-
tinuous dilations of the mother wavelet. The results de-
veloped are based on the definition of a discrete-time scal-
ing (dilation) operator through a mapping between the dis-
crete and continuous frequencies. The forward and inverse
wavelet transforms are formulated. The admissibility condi-
tion is derived, and examples of discrete-time wavelet con-
struction are provided. The new form of wavelet trans-
form is naturally suited for discrete-time signals and pro-
vides analysis and synthesis of such signals over a continu-
ous range of scaling factors.

1. INTRODUCTION

The conventional discrete wavelet transform (DWT) [1, 2,
5, 6] provides a formulation over a dyadic set of scaling
factors. However, in some wavelet applications, informa-
tion at scaling factors other than those values on the dyadic
grid is required. The conventional continuous wavelet trans-
form (CWT) [2] provides information at scaling factors over
a continuum. But, as the CWT is generally computed by
using the samples of continuous-time wavelets, the com-
putational complexity increases with the scaling factor. In
both DWT and CWT, the set of wavelets are continuous-
time signals. However, if the signal to be analyzed is in-
herently discrete-time, it is natural to choose a discrete-time
signal as the mother wavelet and provide analysis and syn-
thesis based on a set of wavelets which are discrete-time. In
this paper we present a new formulation of wavelet trans-
form in which the wavelets are all discrete-time signals, and
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Figure 1: Block diagram of the discrete-time, continuous-
dilation scaling operator. (I)DTFT: (inverse) discrete-time
Fourier transform;f : frequency warping transform.

continuous dilations of the mother wavelet are used to form
a discrete-time wavelet transform over continuous scaling
factors.

2. DISCRETE-TIME SCALING OPERATOR

Generally the scaling or dilation operation of a discrete sig-
nalx(n) by an arbitrary factor is not well defined. It is diffi-
cult to obtain an interpretation of scaling in the discrete-time
domain that is as unambiguous as that in the continuous-
time domain. We present here a new approach for discrete-
time scaling that can handle continuous scaling factors. We
define the discrete-time scaling operator in a way that effec-
tively amounts to convertingx(n) into a continuous-time
signal through an invertible transform, applying the scaling
operation to the continuous-time signal and finally mapping
the signal back to the discrete-time domain. The definition
is actually based on a warping transform in the frequency
domain (Figure 1).

Definition 1 A functionf( ) is a discrete-time frequency
(!) to continuous-time frequency (
) warping transform if
and only if:

1. In
 = f(!), ! 2 [��; �] and
 is the real line.

2. The transform is one-to-one.



3. f( ) is anti-symmetric about the origin, i.e.f(�!) =
�f(!). Furthermore, it is differentiable and mono-
tonic in [��; �].

4. f(0) = 0.

The defined discrete-time scaling operator gives the follow-
ing input-output relationship in the frequency domain,

Y (!) = aX[�a(!)]; (1)

whereX(!) andY (!) are discrete-time Fourier transforms
of the input and output sequences, respectively, and

�a(!) = f�1[af(!)]: (2)

3. DISCRETE-TIME CONTINUOUS-DILATION
WAVELET TRANSFORMS

3.1. The Forward and Inverse Transforms

Let (n)be a discrete-time sequence and	(!) be its discrete-
time Fourier transform defined by

	(!) = G[ (n)] =
X
n

 (n)e�j!n; (3)

whereG denotes the discrete-time Fourier transform. Let

	a(!) =
p

�0a(!)	[�a(!)]; (4)

where0 denotes the first derivative with respect to!. Let

 a(n) = G�1[	a(!)]; (5)

whereG�1 is the inverse discrete-time Fourier transform.
The discrete-time continuous-dilation wavelet transform
(DCWT) is defined by choosing (n) as the mother wavelet
and a(n) as the wavelet at scale levela. It can be shown
that (n) and a(n) have the same energy. For a discrete-
time sequencex(n) and mother wavelet (n), the wavelet
transform coefficients,W (a; n), are computed as the inner
products ofx(n) and translations of a(n).

W (a; n) = hx(m);  a(m� n)i; (6)

whereh i denotes the inner product. The frequency domain
representation of the forward DCWT is given by

W (a; n) =
1

2�

Z �

��
X(!)

p
�0a(!)	

�[�a(!)]e
j!nd!;

(7)
whereX(!) and	(!) are the discrete-time Fourier trans-
forms ofx(n) and (n), and * denotes the complex conju-
gate. The inverse discrete-time continuous-dilation wavelet
transform (IDCWT) is given by

x̂(n) =
1

C 

Z 1

0

hW (a;m);  ̂�a(m� n)ida; (8)

where

C =

Z �

��
f(�)j	(�)j2d�; (9)

and

 ̂a(n) = G�1

"
[f(!)]2

p
�0a(!)	

�[�a(!)]

f 0(!)

#
(10)

is the IDCWT wavelet at scalea. Note that different mother
wavelets are used for the forward and inverse transforms.
The relationship between the frequency spectrum,	(!), of
the DCWT mother wavelet (n), and the frequency spec-
trum,	̂(!), of the IDCWT mother wavelet̂ (n), is

	̂(!) =
[f(!)]2

f 0(!)
	(!): (11)

The admissibility condition [1] of the DCWT is

C =

Z �

��
f(�)j	(�)j2d� <1: (12)

It is generally required that the frequency spectrum	(!) of
the mother wavelet satisfies	(��) = 0. However, there is
no restriction on the value of	(0).

3.2. Bilinear Transform Based DCWT and IDCWT

We discuss the DCWT and IDCWT for the case of bilinear
transform [4] in which

f(!) = 2 tan(!=2): (13)

For simplicity, we will only discuss constructions of real-
valued, bandlimited wavelets and their corresponding DCWT
and IDCWT. Let (n) be a discrete-time signal and	(!)
be its discrete-time Fourier transform which satisfies

1. j	(!)j <1 for all ! 2 [��; �].

2. 	(!) is symmetric about the origin.

3. Bandlimitedness.	(!) = 0 for ! 2 [0; !1] and! 2
[!2; �], where0 � !1 < !2 � �.

It is easy to verify that (n) satisfies the admissibility con-
dition and thus is a valid DCWT mother wavelet. The DCWT
wavelet at scalea,  a(n), will then have a frequency spec-
trum

	a(!) =
p
�0a(!)	[�a(!)]: (14)

 a(n) is also bandlimited and the two ends of the pass band
are given by

!01 = 2 tan�1[tan(!1=2)=a] and!02 = 2 tan�1[tan(!2=2)=a]:
(15)

If 0 < a < 1, then!01 � !1 and!02 � !2, the whole pass
band shifts to the right. Ifa > 1, then the whole pass band



shifts to the left. Along with the shifting of the whole pass
band in one direction, the bandwidth of the pass band also
changes. Let�! and�!0 be the bandwidths of the mother
wavelet�(n) and the wavelet�a(n). It is found that

� If 0 < a < 1, then8<
:

�!0 > �! if tan(!1=2) tan(!2=2) < a
�!0 = �! if tan(!1=2) tan(!2=2) = a
�!0 < �! otherwise

� If a > 1 then8<
:

�!0 > �! if tan(!1=2) tan(!2=2) > a
�!0 = �! if tan(!1=2) tan(!2=2) = a
�!0 < �! otherwise

In the first example of the next section,!1 = 0 and!2 =
�=2. Asa changes,!1 remains at the origin, while!2 shifts
to the right if0 < a < 1 and shifts to the left ifa > 1. This
gives a dilated frequency spectrum and thus a compressed
wavelet when0 < a < 1, and a dilated wavelet whena > 1.
In the second example,!1 = �=4 and!2 = 3�=4. Note
that tan(!1=2) tan(!2=2) = 1. It is found that�!0 <
�! for both 0 < a < 1 anda > 1. Therefore, if0 <
a < 1, both!1 and!2 shift to the right and the bandwidth
decreases; ifa > 1, both!1 and!2 shift to the left and
the bandwidth still decreases. This eventually results in a
compressed wavelet when0 < a < 1 and a dilated wavelet
whena > 1.

Example 1:!1 = 0, !2 = �=2

Consider a discrete-time DCWT mother wavelet (n)which
has the following frequency spectrum in[��; �]

	(!) =

�
j sin(2!)j if j!j 2 [0; �=2]
0 otherwise

(16)

The spectrum	a(!) of the DCWT wavelet at scalea is

	a(!) =

8><
>:
���2apa sin(!)[cos2(!=2)�a2 sin2(!=2)][cos2(!=2)+a2 sin2(!=2)]5=2

���
if j!j 2 [0; 2 tan�1( 1p

2a
)]

0 otherwise
(17)

The spectrum̂	a(!) of the IDCWT wavelet at scalea is

	̂a(!) =

8><
>:
���8apa sin2(!=2) sin(!)[cos2(!=2)�a2 sin2(!=2)][cos2(!=2)+a2 sin2(!=2)]5=2

���
if j!j 2 [0; 2 tan�1( 1p

2a
)]

0 otherwise
(18)

Figure 2 shows the example DCWT mother wavelet and
DCWT wavelets at different scales. Figure (3) shows the
example IDCWT mother wavelet and IDCWT wavelets at

Figure 2:Example of DCWT bandlimited wavelet for the bilinear
case. The pass band is located between! = 0 and! = �=2. (a)
the DCWT mother wavelet; (c) DCWT wavelet at scalea = 0:2;
(e) DCWT wavelet ata = 5; (b) (d) (f) frequency spectra of (a)
(c) (e) respectively.

different scales. The IDCWT constant in this case isC =
4=3. Figure 4 shows the scalogram of the DCWT of a chirp
function [3]

x(n) = sin[�n2=(2N)]; for n = 0; 1; :::;N (19)

using this wavelet. The continuous changing of the fre-
quency is apparent.

Example 2:!1 = �=4, !2 = 3�=4

The frequency spectrum of the DCWT mother wavelet in
this example is given by

	(!) =

�
j cos(2!)j if j!j 2 [�=4; 3�=4]
0 otherwise

(20)

The DCWT wavelet at scalea has the following spectrum.

	a(!) =

8><
>:
���pa[cos4(!=2)+a4 sin4(!=2)�3=2 sin2(!)]

[cos2(!=2)+a2 sin2(!=2)]5=2

���
if j!j 2 [2 tan�1(�

8
); 2 tan�1( 3�

8
)]

0 otherwise
(21)

The frequency spectrum of the IDCWT wavelet at scalea is
given by

	a(!) =

8><
>:
��� 4pa sin2(!)[cos4(!=2)+a4 sin4(!=2)�3=2 sin2(!)]

[cos2(!=2)+a2 sin2(!=2)]5=2

���
if j!j 2 [2 tan�1(�

8
); 2 tan�1( 3�

8
)]

0 otherwise
(22)

The IDCWT constant isC = 0:558. Figure 5 and 6 show
plots of these DCWT and IDCWT wavelets at different scales.
By changing the value ofa and correlating the wavelet thus
obtained with a given signal, different regions of the fre-
quency spectrum of the given function are covered by the
DCWT.



Figure 3:Example of IDCWT bandlimited wavelet for the bilin-
ear case. The pass band is located between! = 0 and! = �=2.
(a) the IDCWT mother wavelet; (c) IDCWT wavelet at scale
a = 0:2; (e) IDCWT wavelet ata = 5; (b) (d) (f) frequency
spectra of (a) (c) (e) respectively.

Figure 4:DCWT of a chirp function. (a) input; (b) scalogram of
the DCWT.

4. CONCLUSION

The DCWT and IDCWT framework presented in this pa-
per offers advantages in that it uses a set of discrete-time
wavelets and is able to accommodate continuous dilations
of the mother wavelet to provide analysis and synthesis of
a discrete-time signal. It provides a potential tool for appli-
cations such as pattern recognition, image processing, etc.,
that require information of dilations of a discrete signal at
arbitrary scaling factors.
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