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ABSTRACT
In continuous density Hidden Markov Models (HMMs) for speech
recognition, the probability density function (pdf) for each state
is usually expressed as a mixture of Gaussians. In this paper, we
present a model in which the pdf is expressed as the convolution of
two densities. We focus on the special case where one of the con-
volved densities is aM -Gaussian mixture, and the other is a mix-
ture ofN impulses. We present the reestimation formulae for the
parameters of theM � N convolutional model, and suggest two
ways for initializing them, the residual K-Means approach, and
the deconvolution from a standard HMM withMN Gaussians per
state using a genetic algorithm to search for the optimal assignment
of Gaussians. Both methods result in a compact representation that
requires onlyO(M +N) storage space for the model parameters,
andO(MN) time for training and decoding. We explain how the
decoding time can be reduced toO(M + kN), wherek < M .
Finally, results are shown on the 1996 Hub-4 Development test,
demonstrating that a32� 2 convolutional model can achieve per-
formance comparable to that of a standard 64-Gaussian per state
model.

1. INTRODUCTION

In most speech recognition systems based on the traditional HMM,
a set of observationsX = (x1; : : : ; xT ) is assumed to be gener-
ated by a sequence of HMM states, where the pdf of each state is
a Gaussian mixture of the form

p(x) =

KX
k=1

wkN (x;�k; Ck)

In this paper, we use a more structured representation for the pdf;
we assume that each observationxt is generated by the convolu-
tion of two densitiespy(y) andpb(b), wherepy(y) is a mixture of
N impulses

py(y) =

NX
j=1

qj�(y �mj)

andpb(b) is a Gaussian mixture ofM components

pb(b) =

MX
i=1

piN (b;�i; Ci)

Therefore,

p(xt) =

Z
pb(bt)py(xt � bt)dbt

=

MX
i=1

NX
j=1

piqjN (xt;�i +mj ; Ci)

We can see that in this simple model the likelihood of each ob-
servationxt can be computed trivially as with any other Gaussian
mixture density. However, the joint reestimation of the parame-
ters�i,mj andCi is more complicated than the standard case and
requires the solution of a least squares problem.

In the following sections, we present the implementation de-
tails of the convolutional model. Section 2 shows the solution of
the least squares problem for the reestimation of the parameters
of the model, both in forward-backward training and in K-Means
initialization. In section 3 we present two different ways to ini-
tialize the parameters of the convolutional model, the residual K-
Means, and the deconvolution from anMN -bin HMM1. Section 4
describes the storage requirements of the convolutional model, and
presents a method for reducing the likelihood computation during
recognition, by taking advantage of the structure in the convolu-
tional model. Experimental results on the 1996 Hub-4 develop-
ment test are shown in section 5. Finally, we conclude with a sum-
mary and suggestions for future research in section 6.

2. PARAMETER REESTIMATION

In this section we present the reestimation formulae for the case
where the density for each states = 1; : : : ; S is the convolution
of anM -component Gaussian mixture with anN -component im-
pulse mixture. We assume that our observations aren-dimensional
feature vectors.

2.1. Forward-Backward Training

In forward-backward training we seek to maximize the value of
the auxiliary function

Q =

SX
s=1

TX
t=1

MX
i=1

NX
j=1


ij
s (t)Qij

s (t) (1)

where

Qij
s (t) = b

ij
s �

1

2
Lijs (t) (2)

b
ij
s = ln psi + ln qsj �

n

2
ln(2�) (3)

1In what follows, we will use the termK-bin model to describe an
HMM with K Gaussians per state.



Lijs (t) = ln(jCsij) + (4)

(xt � �si �msj)
0

C
�1

si (xt � �si �msj) (5)

ijs (t) is the probability that the observationxt is generated by the
cooperation of theith Gaussian andjth impulse in states; Csi is
the covariance matrix of theith Gaussian component in states; �si
andmsj are the mean vectors of theith Gaussian andjth impulse
in states, respectively.

By differentiatingQ with respect to the parameters�si and
msj we obtain:

�si =

PN

j=1

PT

t=1
ijs (t)(xt �msj)PN

j=1

PT

t=1

ij
s (t)

(6)

msj =

PM

i=1
C�1

si

PT

t=1
ijs (t)(xt � �si)PM

i=1
C�1

si

PT

t=1
ijs (t)

(7)

By differentiatingQ with respect tozijs = �si + msj , and
Csi, we obtain:

zijs =

PT

t=1
ijs (t)xtPT

t=1
ijs (t)

(8)

Csi =

PT

t=1
ijs (t)(xt � zijs )(xt � zijs )0PT

t=1

ij
s (t)

(9)

Similarly, the reestimation formulae for the mixture weights
are:

psi =

PN

j=1

PT

t=1
ijs (t)PM

i=1

PN

j=1

PT

t=1

ij
s (t)

(10)

qsj =

PM

i=1

PT

t=1
ijs (t)PM

i=1

PN

j=1

PT

t=1
ijs (t)

(11)

As we can see in equations 6 and 7, the solution for�si de-
pends onmsj and vice versa. If we assume diagonal covariance
matricesCsi, then we can jointly reestimate the means in each
dimensiond = 1; : : : ; n independently, by solving the following
system: �

Ds Fs
F 0

s�
d
s Gd

s

��
�ds
md
s

�
=

�
�ds
�ds

�
(12)

where

Fs(i; j) =

TX
t=1


ij
s (t)

Ds(i; i) =

NX
j=1

Fs(i; j); Ds(i; j) = 0 i 6= j

�d
s(i; i) = C

�1

si (d; d); �d
s(i; j) = 0 i 6= j

G
d
s(j; j) =

MX
i=1

(F 0

s�
d
s)(j; i); G

d
s(j; i) = 0 i 6= j

�
d
s = [�s1(d) � � ��sM (d)]0

m
d
s = [ms1(d) � � �msN (d)]0

�
d
s = [�s1(d) � � ��sM (d)]0

�si =

NX
j=1

TX
t=1


ij
s (t)xt

�
d
s = [�s1(d) � � � �sN (d)]0

�sj =

MX
i=1

C
�1

si

TX
t=1


ij
s (t)xt

Note that the system in Eq. 12 has infinite number of solutions,
since for every pair(�ds ;m

d
s) that satisfies Eq. 12, the pair(�ds +

�;md
s � �), � > 0, is also a solution to the system. Thus, we

first find the minimum norm solution formd
s , using Singular Value

Decomposition, as follows:

m
d
s =

�
G
d
s � F

0

s�
d
sD

�1
s Fs

�+ �
�
d
s � F

0

s�
d
sD

�1
s �

d
s

�
(13)

and then, we solve for�ds using the formula

�
d
s = D

�1
s

�
�
d
s � Fsm

d
s

�
(14)

This solution has two advantages over the direct SVD solution
from Eq. 12: First, in Eq. 13 we need to compute the pseudo-
inverse of aN �N matrix, while direct SVD on Eq. 12 requires
operations on an(M + N) � (M + N) matrix. If N < M ,
which is usually the case in our experiments, then Eq. 13 results
in a faster solution. Second, in the special case where the impulse
mixture consists of a single mean, i. e.N = 1, then Eq. 13 returns
0 intomd

s , and the solution for�ds is identical to the standardM -
component Gaussian mixture HMM.

2.2. K-Means

In K-Means [1], we reestimate the means by solving a linear sys-
tem similar to Eq. 12:�

Ds Fs
F 0

s Gs

��
�ds
md
s

�
=

�
�ds
�ds

�
(15)

where

Gs(j; j) =

MX
i=1

Fs(i; j); Gs(j; i) = 0 i 6= j

�sj =

MX
i=1

TX
t=1


ij
s (t)xt

As we can see, the composite matrix in Eq. 15 is indepen-
dent of the dimensiond, and therefore the K-Means reestimation
requires only one matrix inversion for alln dimensions.

The variances are reestimated in the last iteration of K-Means,
by keeping the means fixed and calculating the variance of the data
around them, in the usual way.

2.3. Approximate solution in forward-backward

Notice that in the forward-backward reestimation, although we es-
timateM + N mean vectors andM variances per state, we still
need to storeO(MN) statistics, in order to solve the linear sys-
tem in Eq. 12. This may result in excessive disk storage require-
ments and I/O overhead whenMN is large. To avoid this prob-
lem, we have implemented an approximate solution to the forward-
backward reestimation, that requiresO(M +N) space.



We perform a total of four passes of forward-backward train-
ing: in the first and third passes, we keep the impulse meansmsj

fixed, and we reestimate the Gaussian means�si and variances
Csi. In the second and fourth passes, we keep the variances fixed,
and we reestimate both the�si andmsj means. This approxima-
tion achieves the same accuracy as the exact solution, with signif-
icantly smaller storage and I/O requirements.

3. MODEL INITIALIZATION

We have found that the recognition accuracy of the convolutional
models depends heavily on the initialization of the K-Means. In
this section, we propose two methods for initializing the model
parameters, and we compare their performance in section 5.

3.1. Residual K-Means

In this method, we first initialize the means of a regular HMM with
M Gaussian components per state, and we run five iterations of K-
Means. Then, we go over the training data, and for each feature
vector, we find the Gaussian that is closest to it, in the Euclidean
sense. We subtract the mean of the Gaussian from the feature vec-
tor, and we use the residual frames computed in this way to ini-
tialize a regular HMM withN Gaussians per state. We follow by
running five passes of K-Means, using always the residual frames.
The means from the first sequence of K-Means are the initial es-
timates for the�si parameters, and the means from the second
sequence of K-Means initialize the impulse meansmsj .

3.2. Deconvolution from MN-bin HMM

Another way to get initial estimates for the parameters of the con-
volutional model, is to initialize and run K-Means for a regular
HMM with MN Gaussian components per state, and then de-
convolve the resulting model, using Eq. 15. In other words, we
solve for theM -component Gaussian mixture andN -component
impulse mixture whose convolution is the closest to the original
MN -component Gaussian mixture, for each state. This method
brings up the problem of the optimal assignment of Gaussians. It
is clear that if we change the order of theMN Gaussians within
a mixture, then Eq. 15 will result in different solution for the
parameters�si andmsj . Thus, it is important that we explore
as many permutations as possible, before initializing the convolu-
tional model parameters with Eq. 15. Since the number of permu-
tations to explore is proportional to(MN)!, we cannot use brute
force. Instead, we chose to search for the optimal assignment of
Gaussians using a Genetic Algorithm (GA).

3.3. GA search for optimal deconvolution

As described in [2] and [3], the key elements of a GA are the rep-
resentation of each member in the genetic population, the fitness
function that assigns fitness values to each member, and the genetic
operators that combine existing members to generate new ones.

In our implementation, each member is represented as a se-
quence of pairs(i; j), wherei; j 2 [1;MN ]. Each pair(i; j) indi-
cates a swapping of the Gaussians in theith andjth bins. Thus, a
sequence of pairs represents a permutation of theMN Gaussians
within a mixture. To obtain a fitness value for each member, we
order the Gaussians according to the representation of the member,
and we solve for the means�si andmsj , using Eq. 15. Then, we

compute the Euclidean distance between the orderedMN means,
and the convolved means, weighted by the number of frames as-
signed to each Gaussian.

The genetic operators that we use are selection, single-point
crossover, and mutation. Selection is done probabilistically, based
on the fitness values of the members. Crossover and mutation are
applied with probabilities that are given as parameters to the search
algorithm. The members of the first population (generation 0) are
initialized randomly. Then, successive generations are created as a
result of the genetic operators. The search is terminated when the
majority of the population has converged to a local optimum.

4. COMPUTATIONAL REQUIREMENTS

It is clear from section 2 that the storage requirements for the pa-
rameters of anM �N convolutional model areO(M +N), since
for each state we need to store theM Gaussian means and vari-
ances, and theN impulse means. However, in order to compute
the likelihood in both training and recognition, we need to evalu-
ateMN Gaussians per state, so the time complexity for likelihood
computation isO(MN).

The time complexity for recognition can be significantly re-
duced, if we take advantage of the structure in theM � N con-
volutional model. We have found that in the case whereN is rel-
atively small compared toM , the means of theN impulses are
concentrated around zero, with small variance. This suggests the
following approximation for computing the observation probabil-
ity of framex in states:

� evaluate theM Gaussians in states, at framex (O(M)
time)

� find the bestk Gaussians, wherek is small compared toM

� convolve the bestk Gaussians with theN impulses, result-
ing in kN Gaussians

� evaluate thekN Gaussians at framex and compute the final
probability (O(kN) time)

This approximation reduces the Gaussian computation toO(M +
kN). In the next section we show that this speedup comes with
essentialy no degradation in recognition accuracy.

5. EXPERIMENTAL RESULTS

In this section we present the results of recognition experiments
that we conducted in order to evaluate the efficacy of the convo-
lutional models, using the BYBLOS transcription system [4]. For
the training of our models, we used approximately 24 hours of
speech from the 1997 Hub-4 Broadcast News corpus. For test-
ing, we used the 1996 Hub-4 Unpartitioned Evaluation Develop-
ment test set (H4D96-UE). All models are trained based on our
gender-dependent, triphone State Clustered Tied Mixture (SCTM)
non-crossword system.

Table 1 shows the effect of the K-Means initialization method
on the accuracy of the convolutional model, whenM = 32 and
N = 2.

We can see that without searching for the optimal assignment
of Gaussians, deconvolution from a 64-bin model is much worse
than the residual K-Means approach. Using the GA to find a better
deconvolution results in accuracy that is slightly better than the
residual initialization.



Initialization Method Word Error %
Residual K-Means 33.9
32� 2 Deconvolution (random assignment) 35.0
32� 2 Deconvolution (GA search) 33.8

Table 1: Effect of K-Means initialization on the accuracy of con-
volutional models. Results are shown for the male speakers in
H4D96-UE

In Table 2 we show how the convolutional model withM =
32 andN = 2; : : : ; 4 compares to the standard 32-bin and 64-bin
models, in terms of accuracy and speed. All the convolutional
models in this table are initialized using the residual K-Means
method.

Model Type Word Error % xRT in bw pass
Standard 32-bin 32.8 12
Standard 64-bin 32.3 22
32 � 2 32.1 23
32 � 3 32.1 34
32 � 4 31.9 45
32 � 4 fast 32.0 24

Table 2: Effect of varying the number of impulses on the accuracy
and speed of convolutional models.

First, we can see that there is a 0.5% absolute gain for the
64-bin model, compared to the 32-bin baseline. This is expected,
since the 64-bin model has twice as many parameters as the 32-
bin model. With a32 � 2 model, however, we can obtain a 0.7%
gain over the 32-bin baseline, and 0.2% absolute over the 64-bin
model, by just increasing the number of parameters to 34 per state
(32 Gaussian means/variances, and 2 impulse means). Further in-
crease of the number of impulses to 4 gives us an additional 0.2%
gain. The last line in Table 2 shows the performance of the32� 4
model when we use the approximate Gaussian computation de-
scribed in section 4, withk = 5. We see that there is approxi-
mately a factor of two speedup in decoding time, with essentially
no loss in accuracy.

6. CONCLUSIONS AND FUTURE RESEARCH

We have presented a novel approach in modeling the residual frame
variability in speech, using convolutional densities. We described
in detail the case where the density is the convolution of anM -
component Gaussian mixture with anN -component impulse mix-
ture, and showed two methods for initializing the parameters of
the convolutional model, the residual K-Means, and the deconvo-
lution from aMN -bin model. In the latter case, we showed that it
is important to use a search method for finding a good permutation
of theMN Gaussians in each state, before applying the deconvo-
lution. Using a GA for search of the optimal permutation results
in accuracy comparable to the residual K-Means approach. We
described a method for reducing the computational requirements
of the convolutional model during recognition, fromO(MN) to
O(M + kN), wherek < M , without sacrificing accuracy. Fi-
nally, we showed results on the H4D96-UE demonstrating that the

32 � 2 and32 � 4 models achieve better performance than the
standard 64-bin model, with fewer parameters.

We are currently working on improving the accuracy of the
convolutional models, by trying different ways of initialization. In
particular, we are interested in the use of Parametric Trajectory
Models [5], [6] as a means of dividing the data intoN clusters; we
then plan to initialize anM -component Gaussian mixture for each
cluster, and combine the mixtures into aM � N convolutional
model.

Another area of research is the adaptation of the convolutional
models. Both Speaker Adaptive Training (SAT) and unsupervised
MLLR adaptation on the test are expected to give additional gain
for the32 � 2 model compared to the 64-bin baseline, due to the
smaller number of parameters in the convolutional model.
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