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ABSTRACT

This paper proposes a new approach to linearly-constrained
adaptive filtering, where successive Householder transfor-
mations are incorporated in the algorithm update equation in
order to reduce computational complexity and coefficient-
error norm. We show the derivation of two new algorithms,
namely the unnormalized and the normalized Householder-
transform constrained LMS algorithms (HCLMS
and NHCLMS, respectively). Although the derivation is
carried out based on the constrained LMS (CLMS) algo-
rithm, the technique can be applied to other constrained al-
gorithms as well. Simulation results of a linearly-constrain-
ed minimum-variance problem show that in finite-precision
implementation the coefficient-error norms obtained with
the new algorithms are smaller than those obtained with the
CLMS and the normalized CLMS algorithms.

1. INTRODUCTION

Linearly-constrainedadaptive filters have been used in many
applications, such as antenna arrays and interference sup-
pression in CDMA. In general, constrained adaptation algo-
rithms are derived from their unconstrained versions, e.g.,
the constrained LMS (CLMS) algorithm [1], the fast con-
strained RLS algorithm [2], the constrained normalized and
binormalized LMS algorithms [3], and the constrained quasi-
Newton (QN) algorithm [4]. In all these algorithms the di-
rection of updating is premultiplied by a rank-deficient pro-
jection matrix, which renders them not optimal in the sense
of computational complexity and finite-precision arithmetic
behavior. Furthermore, these algorithms have in common a
correction factor to ensure the constraints at every iteration.
If this correction factor is not applied, then perturbations
due to roundoff errors in certain directions cannot be sup-
pressed and coefficient divergence will occur [5].

In this paper we address these problems by suitably trans-
forming the input-signal vector so that the algorithm oper-

ates on a reduced-dimension subspace and therefore does
not require updating of all its coefficients. Furthermore, the
subspace where the coefficient updating is performed is or-
thogonal to the subspace spanned by the constraint matrix.
No correction terms need be applied and the solution sat-
isfies the constraints exactly at every iteration. The pro-
posed algorithm has lower computational complexity than
the CLMS algorithm and also smaller coefficient-error norm
when implemented in finite precision. In addition, the more
constraints introduced, the more economical is the algo-
rithm and the smaller is the coefficient-error norm compared
to the CLMS algorithm. When compared to the generalized
side-lobe canceler (GSC) a significant reduction in compu-
tational complexity is achieved for applications with more
than one constraint [5].

For the purpose of comparison, in this paper we show
a finite-precision implementation of a minimum-variance
constrained filter, where reducing computational complex-
ity and satisfying constraints exactly is of crucial impor-
tance. We anticipate that these advantages will be equally
evident in several other applications such as antenna arrays,
mobile communications, and others.

2. OPTIMAL LINEARLY-CONSTRAINED
MINIMUM-VARIANCE FILTER

The optimal (LCMV) filter in the sense of the minimum
mean squared error (MSE) is the one that minimizes the
following objective function:

�w =
1

2
kR1=2wk2 (1)

subjected to the set of linear constraints defined by

CTw = f (2)

wherew is a vector of coefficients of lengthM ,R1=2 is the
square-root factor of the the autocorrelation matrix of the



input signal,C is theM � p constraint matrix, andf is the
p� 1 gain vector. The reference signal in this case has been
chosen equal to zero without loss of generality.

By using the method of Lagrange multipliers, the con-
strained optimization problem becomes an unconstrained
optimization problem in which the objective function mini-
mized is

�w =
1

2
kR1=2wk2 + �

T
�
CTw � f

�
(3)

with � 2 R
p�1 . The gradient of (3) with respect to the

coefficients is

r� = Rw+C� (4)

The optimal coefficients are the ones for whichr� = 0,
i.e.,

wopt = �R�1C� (5)

with

� = �(CTR�1C)�1f (6)

that exists if(CTR�1C)�1 exists. Therefore,

wopt = R�1C(CTR�1C)�1f (7)

The equation above bears the difficulty of knowing in
real-time the inverse of the input-signal autocorrelation ma-
trix,R�1. A much more practical approach is to produce an
estimate ofwopt recursively at every iteration. As time pro-
ceeds, the estimate is improved such that convergence in the
mean to the optimal solution may eventually be achieved.
Frost [1] has proposed an algorithm to estimatewopt based
on the gradient method or, more specifically, based on the
LMS algorithm for adaptive filtering.

2.1. The Constrained LMS Algorithm

Letwk denote the estimate ofwopt at time instantk. Then,
according to the LMS algorithm,wk+1 is given by

wk+1 = wk � �r�;k

= wk � � [Rkwk +C�k] (8)

wherer�;k is the estimate ofr� at time instantk and� is a
step-size used to control speed of convergence and steady-
state estimation error.

As the constraints must be satisfied at every iteration,

CTwk+1 = f (9)

Therefore,

f = CTwk � �CT [Rkwk +C�k] (10)

Solving for�k gives

�k = (CTC)�1
�
CTwk � f

�
�CTRkwk

�
(11)

which yields a unique solution if(CTC)�1 exists. The al-
gorithm uses as an estimate of the input-signal autocorrela-
tion matrixRk the outer product of the input-signal vector
by itself, i.e.,Rk = xkx

T
k . In this case, the coefficient-

update equation is as follows:

wk+1 = wk � �yk
�
I�C(CTC)�1CT

�
xk

+C(CTC)�1(f �CTwk)

= wk � �ykP?xk

+C(CTC)�1(f �CTwk) (12)

where

yk = wT
k xk (13)

is the filter output, equal to the output error in this case of
zero reference signal,I is theM th-order identity matrix,
and

P? = I�C(CTC)�1CT (14)

is the projection matrix onto the subspace orthogonal to the
subspace spanned by the constraint matrix.

A normalized version of the CLMS algorithm, namely
the NCLMS algorithm, can be easily derived [3]; the update
equation becomes:

wk+1 = wk � �
yk

xTkP?xk
P?xk

+C(CTC)�1(f �CTwk) (15)

The necessity of the last term in (12) and (15) may be
surprising, for it is expected that allwk satisfy the con-
straint and, therefore, this last term should be equal to zero.
In practice, however, this term shall be included to prevent
divergence of the coefficients in a limited-precision arith-
metic machine [5]. Without this term, the updating of the
coefficient vector in the CLMS algorithm is carried out in a
direction given by the projection of the input-signal vector
onto the subspace orthogonal to the subspace spanned by
C. Therefore, any direction within this subspace never con-
tributes to correct the coefficient vector. Furthermore, per-
turbations introduced in this direction cannot be corrected
by the adaptation of the algorithm and may cause a cumu-
lative error effect [5] in the coefficient estimates. The im-
portance of the last term in (12) is related to the correction
of these perturbations introduced in the coefficient-update
equation in the direction not excited by vectorP?xk. The
same reasoning can be applied to the RLS algorithm pre-
sented in [2] and to the QN algorithm presented in [4].



3. HOUSEHOLDER-TRANSFORM CONSTRAINED
LMS (HCLMS) ALGORITHM

In the updating of the coefficients, the use of a projected
input-signal vector which is nonpersistently exciting in a
known direction is obviously suboptimal and dangerous. Be-
sides the lack of capacity to correct perturbations in a direc-
tion not excited, an extra term of magnitude proportional
to the perturbation must be calculated adding to algorithm
complexity.

The HCLMS algorithm to be derived in this section per-
forms a rotation on vectorP?xk in order to make sure that
wk is never perturbed in a direction not excited byP?xk .
This can be done if an orthogonal rotation matrixQ is used
as the transformation that will generate a modified coeffi-
cient vector�wk that relates towk according to

�wk = Qwk (16)

If we choose the matrixQ such thatQQT = QTQ = I

and

�C( �CT �C)�1 �CT =

�
Ip�p 0

0 0

�
(17)

then �C = QC satisfiesf = �CT �wk+1 and the transformed
projection matrix is such that

�P? = QP?Q
T

=

�
0p�p 0

0 I

�
(18)

If the first p elements of�w0, ŵ0, are equal to the firstp
elements of vector�C( �CT �C)�1f , then they need not be up-
dated. The update equation of the HCLMS algorithm be-
comes

�wk+1 =

�
ŵ0

�wk+1

�
=

�
ŵ0

�wk

�
� �yk

�
0

�xk

�
(19)

where�wk and�xk denote theM �p last elements of vectors
�wk and�xk, respectively. Note that vector�C( �CT �C)�1f has
only p nonzero elements.

Although the solution�wk is biased by a transformation
Q, the output signal and, consequently, the output error are
not modified by the transformation. We conclude, therefore,
that the HCLMS algorithm minimizes the same objective
function minimized by the CLMS algorithm.

Matrix Q may be constructed with successive House-
holder transformations [6] applied onto each of thep columns
of matrixCL, whereL is the square-root factor of matrix
(CTC)�1, i.e.,LLT = (CTC)�1. LetQi be the House-
holder transformation that produces zero entries in the last
M � i positions of theith column of matrixCL, then

Q = Qp � � �Q2Q1 (20)

where

Qi =

�
Ii�1�i�1 0T

0 �Qi

�
(21)

and matrix�Qi is an ordinary(M � i + 1) � (M � i + 1)
Householder transformation matrix.

MatrixCL has orthonormal columns, which means that
matrixQCL is upper diagonal with�1 entries. Therefore,
Eqs. (17) and (18) are satisfied and the algorithm can up-
date the coefficients in a subspace with reduced dimension.
The entries of vectorwk which lie in the subspace of the
constraints need not be updated.

Likewise the CLMS algorithm, a normalized version of
the HCLMS algorithm, namely the NHCLMS algorithm,
can be easily derived and its update equation is

�wk+1 =

�
ŵ0

�wk+1

�
=

�
ŵ0

�wk

�
� �

yk

�xTk �xk

�
0

�xk

�
(22)

4. COMPUTATIONAL COMPLEXITY

Although the HCLMS algorithm presented is indeed a
transform-domain algorithm, the transformation performed
onto the input-signal vector can be very efficiently coded
and only the lastM � p elements of vector�xk need be cal-
culated and only the lastM � p elements of the coefficient
vector need be updated. Table 1 shows the number of addi-
tions, multiplications, and divisions per iteration necessary
for the HCLMS algorithm, the CLMS algorithm, and their
normalized versions. For all algorithms the operation count
was done by considering their most efficient implementa-
tion.

Table 1: Computational Complexity

ALG. ADD. MULT. DIV.

CLMS (2p+ 2)M (2p+ 2)M + 1 0
�(p+ 1)

NCLMS (3p+ 3)M (3p+ 3)M + 1 1
�(p+ 2)

HCLMS (2p+ 2)M (2p+ 2)M 0
�(p2 + p+ 1) �(p2 � 1)

NHCLMS (2p+ 3)M (2P + 3)M 1
�(p2 + 2p+ 2) �(p2 + p� 1)
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Figure 1: Coefficient-error norm for CLMS, NCLMS,
HCLMS, NHCLMS, GP algorithms in 12-bit fixed-point
arithmetic.

5. SIMULATION RESULTS

In this section we consider an example where the input sig-
nal consists of three sinusoids in white noise. The algo-
rithms are tested in a finite precision environment. The ex-
ample is taken from [2] and has the input signal given by

xk = sin(0:3k�) + sin(0:325k�) + sin(0:7k�) + nk
(23)

wherenk is white Gaussian noise such that the signal-to-
noise ratio (SNR) is 40 dB. The filter is constrained to pass
the frequency components at 0.1 rad/s and 0.25 rad/s with
unity response. This results in four constraints with con-
straint matrix

CT =

2
664
1 cos(0:2�) � � � cos[(M � 1)0:2�]
1 cos(0:5�) � � � cos[(M � 1)0:5�]
1 sin(0:2�) � � � sin[(M � 1)0:2�]
1 sin(0:5�) � � � sin[(M � 1)0:5�]

3
775
(24)

and gain vector

fT = [1 1 0 0] (25)

Figure 1 shows the squared deviation of the filter coeffi-
cients from their optimal values for the different algorithms.
We also show the performance of the gradient-projection
(GP) algorithm [1], which is the CLMS algorithm without
the correction factorC(CTC)�1(f �CTw). The simula-
tion was performed in 12-bit fixed-point arithmetic. The
step size used with CLMS, and HCLMS algorithms was
equal to 0.1 and with NHCLMS and NCLMS algorithms
it was equal to 1. The curves were obtained by averaging
over 10 independent trials

As can be seen from the figure, we can clearly see how
the NHCLMS algorithm outperforms the other algorithms

in terms of steady-state value, whereas the HCLMS per-
forms slightly better than the CLMS and NCLMS algorithms.
We can also see that the coefficient-error norm for the GP
algorithm grows unbounded as expected [5].

6. CONCLUSIONS

In this paper, we considered orthogonal rotations in the
CLMS algorithm and derived a new constrained LMS algo-
rithm and its normalized version. Householder transforma-
tions were employed in order to obtain an efficient imple-
mentation of the coefficient-vector rotations. In the new al-
gorithm the coefficients are updated only in the subspace de-
fined by the constraints. Therefore, even in finite-precision
arithmetic the constraints are satisfied exactly at every it-
eration. The proposed algorithm also presents lower com-
putational complexity when compared to the conventional
CLMS algorithm due to its reduced-dimension update equa-
tion. Simulations in finite-precision arithmetic showed su-
perior performance of the new algorithm in terms of coef-
ficient-error norm.
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