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Abstract

The EZW lossless coding framework consists of three stages:
(i) a reversible wavelet transform, (ii) an EZW data struc-
ture to order the coe�cients and (iii) an arithmetic coding
using context modeling. In this work, we discuss the vari-
ous experiments conducted on context modeling of wavelet
coe�cients for arithmetic coding to optimize the compres-
sion e�ciency. The context modeling of wavelet coe�-
cients can be classi�ed into two parts: (i) context model-
ing of signi�cance information and (ii) context modeling of
the remaining or residue information. It was observed from
our experiments while context modeling of residue helped
in achieving considerable compression e�ciency, the con-
text modeling of signi�cance information helped only to a
modest extent.
Keywords: lossless, image coding, EZW, wavelet, context
modeling.

1. INTRODUCTION

Multimedia applications such as HDTV, internet, video
conferencing and telemedicine have created interest among
researchers on the problem of compressing still images and
video. In this paper, we concentrate on lossless image com-
pression using a set partitioning based EZW framework.
The EZW based lossless image coding framework consists
of three stages: (i) reversible discrete wavelet transform (ii)
ordering of wavelet coe�cients using the EZW data struc-
ture and (iii) context modeling based arithmetic coding.
The choice of wavelets plays an important role in decor-
relating and compacting the image data and thereby im-
proving the compression e�ciency. The EZW data struc-
ture orders the wavelet coe�cient to exploit the interband
correlation. Finally, in the third stage, the arithmetic cod-
ing exploits the skewness existing in the distribution of
wavelet coe�cients using di�erent context models. The
research work presented in this paper consists of several
experiments to investigate (i) di�erent methods of order-
ing the wavelet coe�cients using the EZW data structure
and (ii) di�erent context models that can be used in con-
junction with arithmetic coding to exploit the ordering of
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wavelet coe�cients. Context modeling of wavelet coe�-
cients is being recently studied for lossy and lossless image
coding applications [5][6].

2. ABBREVIATIONS AND TERMINOLOGY

The terminology used in this paper is similar to that used
by Shapiro [1], and Said et al [2] and presented here for
convenience. Let W , H represent the width and height of
image and let T = 2n represent the current threshold.

� Sn(i; j): Signi�cance of a coe�cient w.r.t T

� Sn(D(i; j)): Signi�cance of descendants w.r.t T

� Sn(L(i; j)): Signi�cance of grand-descendants w.r.t
T

� LIP: List of Insigni�cant Pixels

� LSP: List of Signi�cant Pixels

� LIS: List of Insigni�cant Sets

� Signi�cance Bit: The bit corresponding to Sn(i; j)
needed to update the wavelet coe�cients in the de-
coder.

� Message Bit: The bit corresponding to Sn(D(i; j))
or Sn(L(i; j)) that is needed for ordering informa-
tion.

� S Bitmap: This corresponds to the set of Sn(i; j) val-
ues for all coordinates (i; j) in the transformed image
with respect to one threshold say 2n or the n-th bit
plane. Then S Bitmap corresponds to fSn(i; j) : 0 �
i < W; 0 � j < H; T = 2ng

Similar de�nitions hold for SD and SL Bitmaps, corre-
sponding to Sn(D(i; j)) and Sn(L(i; j)) respectively.

3. THE SET PARTITIONING SCHEME

The outline of the set partitioning algorithm is given be-
low.
The Algorithm:

Begin

� Perform the reversible discrete wavelet transform.

� Split the coe�cients into:



{ signi�cance map containing the �rst few bit
planes of the wavelet coe�cients.

{ residue map containing the remaining bits of
the wavelet coe�cients

� Encode signi�cance map (i) without grouping or (ii)
with grouping and context model based arithmetic
coding.

� Encode residue map using context model based arith-
metic coding.

End

The set partitioning scheme consists of two passes namely
the sorting and the re�nement pass. The sorting pass sorts
the coe�cients in LIP and moves them to LSP when they
become signi�cant. In other words, the wavelet coe�cients
remain in LIP till the most signi�cant bit (MSB) that is
set to 1 is encountered in the sorting pass. The re�ne-
ment pass outputs the remaining bits following the �rst
signi�cant bit,namely the �rst bit that is set to 1 in the
wavelet coe�cients. The algorithm is iterated by decre-
menting the threshold (threshold usually being a power of
two) each time and terminated when the minimum thresh-
old is reached. The signi�cance map consisting of �rst few
bit planes are encoded as the signi�cance and message bits.
The signi�cance bit is used to update the wavelet coe�-
cient in the decoder and the message bits are used for or-
dering signi�cance information. In the sorting pass, the S,
SD and SL bitmaps are used to compute the signi�cance
information. The S, SD and SL bitmaps are computed for
each threshold using recursive functions `Create SMaps',
`Create SDMaps' and `Create SLMaps'. These functions
can be found in appendix section of [8].

4. ORDERING OF WAVELET COEFFICIENTS

IN THE EZW CODING

As discussed in the previous section, the wavelet coe�-
cients are split into signi�cance and residue map. The sig-
ni�cance information consists of the signi�cance and mes-
sage bits. The sorting and re�nement passes in the set
partitioning algorithm produces signi�cance and message
bits to allow proper decoding of symbols. The signi�cance
bits in the sorting pass are encoded as either groups of 2�2
or as individual bits. Similarly the message bits namely the
Sn(D(i; j)) and Sn(L(i; j)) can also be encoded as a 2� 2
group or individual bits.

� In Algorithm A, the sorting pass outputs Sn(i; j),
Sn(D(i; j)) and Sn(L(i; j)) as individual bits depend-
ing on the coordinate (i; j) in LIS as Type A or Type
B.

� In Algorithm B, the sorting pass outputs Sn(i; j),
Sn(D(i; j)) and Sn(L(i; j)) information as symbols
formed from a 2� 2 grouping of the bits from S, SD
and SL bitmaps.

In Algorithm B, the data packet to be encoded has the
following form:

� A symbol formed by a 2�2 grouping of Sn(D(i; j)).

� Depending on the bit that is set to 1 in Sn(D(i; j)),
a symbol is formed by a 2 � 2 grouping of Sn(i; j).
Hence a maximum of four Sn(i; j) symbols needs to
be coded.

� A symbol formed by a 2� 2 grouping of Sn(L(i; j))
if the grandchildren exist.

The details of each algorithm can be found in [8]. The
grouping of signi�cance information in algorithm B allows
us to exploit up to m-th order entropy, m being f1, 2, 3,
4g. Better context models can be formed to encode the
symbols rather than individual bits and hence the context
models can exploit the correlation between the symbols
formed by Sn(i; j) and Sn(D(i; j)). In the following sec-
tions, the experiments conducted on di�erent context mod-
eling techniques to encode signi�cance and residue values
are discussed.

5. CONTEXT MODELING OF SIGNIFICANCE

INFORMATION

In [2], Said and Pearlman propose the set partitioning ap-
proach in which the signi�cance bits information is en-
coded as a tree node, with root and 4 children as it's ele-
ments. This is performed for each bit plane of the wavelet
coe�cients. Separate models for the tree root and descen-
dants are proposed to encode the signi�cance information
of the wavelet coe�cients and its descendants formed as a
2� 2 set of coordinates.

In our work, initially, a single context model was em-
ployed to code the signi�cance information. This is equiv-
alent to an adaptive arithmetic coding without exploit-
ing any context information or conditioning on the source
symbols. Then 16 models were used to encode the signif-
icance information of Sn(i; j), Sn(D(i; j)) and Sn(L(i; j))
together. These were very few context models to really
exploit the skewness. Using too many models can cause
a phenomenon called context dilution. Hence appropriate
number of models have to be used to exploit the skewness.
Also, there is an initial model cost to encode the symbols.

In our experiments, it was observed that one common
set of context models for the signi�cance information can-
not exploit the correlation between the signi�cance bits
and the message bits namely Sn(i; j) and Sn(D(i; j)) (or
Sn(L(i; j))). Hence a set of 16 di�erent models each for
Sn(D(i; j)) and Sn(L(i; j)) and a set of 4 models for Sn(i; j)
were used. Initially, the contexts were a polynomial func-
tion of the types of the coordinates (Type A, B, or C).
Type C is our modi�cation to the set partitioning algo-
rithm to convey the message that the coordinates have al-
ready been processed as Type A and Type B and does not
need any further processing. Then contexts based on the
previously encoded symbols formed by 2 � 2 block were
used. Both were unsuccessful attempts to code the sig-
ni�cance information e�ciently. Finally, after extensive
experiments with the context models, it was found that
the only correlation in the wavelet coe�cients is between
two successive thresholds T = 2n and T = 2n�1 This is
due to the fact that once a coordinate becomes signi�cant



with respect to a threshold, that coordinate is signi�cant
with respect to all lower thresholds. It was observed that
this context modeling improved the compression e�ciency
to a small extent only. The symbol encoded formed from
the signi�cance information in a 2 � 2 group with respect
to previous threshold was stored as a context information
in the LIS list structure.

6. CONTEXT MODELING OF RESIDUE

The last step in the two algorithms A and B is context
modeling of the residue. The residue coe�cients are formed
after the set partitioning based EZW coding has been per-
formed up to a last threshold (say 2L, usually L=3). The
range of residue is between (�2L � 1 to 2L � 1) As men-
tioned in [7], since the signi�cance of the coe�cient was
found by checking whether a coe�cient is � to the current
threshold, there could be a conict in decoding the sym-
bol zero. This problem was avoided by mapping the co-
e�cients that are equal to current threshold to an escape
symbol and mapping the symbols back to 2L. A major
contribution to the storage cost is from the residue since
the entropy content is high. A vast number of experiments
were conducted to �nd an optimal coding of the residue co-
e�cients. One experiment was to adapt the CALIC (Con-
text based Adaptive Lossless Image Coding) encoding to
exploit the edges and the texture patterns in the residue,
if there are any. A brief discussion of the actual CALIC
encoding and the experiments on adapting it to the residue
coe�cients will be explained in a later section. Another
experiment was to improve the context modeling proposed
in [3].

6.1. Context Modeling based on Set Partitioning

Approach

In [3], the residue values (ranging from �23 to 23) are cat-
egorized into bins or buckets. A model number to encode
the current category number is computed based on the val-
ues of the previously scanned neighboring categories. More
speci�cally, let C(i; j) be the category value of the current
residue value andM(i; j) the model number of the current
pixel which needs to be computed. Let

Cave(i; j) = fC(i; j � 1) +C(i� 1; j � 1)

+ C(i� 1; j) + C(i; j + 1)g=4 (1)

and

Cpar(i; j) = C(
i

2
;
j

2
) (2)

Then,

M(i; j) =Min(4; Cave(i; j) + 5 �Min(4; Cpar(i; j)) (3)

After encoding the category values, actual value within
a category is encoded using a single �xed uniform model.

Our experiments based on the set partitioning approach
are as follows. As mentioned earlier, the signi�cance with

respect to previous thresholds were used as contexts to en-
code the symbols formed in the current threshold. This is
due to the reason that there exists a correlation in the sig-
ni�cance computation between successive thresholds. Some
experiments were conducted to encode the residue coe�-
cients using the last threshold signi�cance computed in
the sorting and re�nement passes of the set partitioning
approach. The intuitive reasoning to such an approach is
as follows: Since there is an initial cost involved in up-
dating the cumulative frequencies of the symbols in adap-
tive arithmetic coding it was expected that this could be
reduced using the correlation existing between the signi�-
cance of the last threshold and the residue coe�cients. It
is known that the distribution of each subband is not the
same. Hence a di�erent modeling technique after the �rst
2 to 3 resolutions was experimented similar to that fol-
lowed in other multiresolution techniques like Hierarchical
INTerpolation (HINT) technique. This did not help in im-
proving the compression e�ciency either and is due to the
fact that initial model cost of the arithmetic coding for the
new model seem to o�set the gains that can be exploited
by varying distributions. After extensive experiments it
was observed that the compression e�ciency did improve
when the siblings of the parents namely the S, SE and SE
parents were also included in the computation of the con-
text model. Hence, the average of the four parents was
calculated instead of the parent category alone.
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6.2. Context Modeling based on CALIC

Instead of modeling the residue based on set partitioning
approach, one can encode the residue coe�cients based on
CALIC style of modeling and coding but with signi�cant
modi�cations to the CALIC algorithm. If CALIC style of
encoding is used then categorization is not necessary as
used in SPIHT. In CALIC [4], a gradient-adjusted predic-
tion is employed. A compound context is formed using the
error energy term and a texture pattern. The prediction
errors are updated and encoded using the context formed.
The details of the CALIC algorithm can be found in [4].

Di�erent predictors based on CALIC style of coding
were carried out in the experiments that we conducted.
Since the predictors did not help in the residue, only con-
text modeling based arithmetic coding was performed on
the residue coe�cients (unlike the categorization in SPIHT).
It was also observed that bias cancellation did not help in
improving the compression e�ciency to a large extent. On
the other hand, bimodal operation of CALIC helps in en-
coding the residue. Since the range of intensity values is
small in the residue map, there is a potential for neigh-
borhood to possess similar intensity values. This fact is
exploited in the residue coe�cients Again, since there is
a correlation in the residue coe�cients in an absolute or
magnitude sense, a remapping function denoted by r(x) is



Table 1: Compression E�ciencies of S+P and (5,3) �lters
with Last Threshold = 32

Compression E�ciency
S+P (Type C) (5,3)

Image M-1 M-2 M-3 M-1 M-2 M-3
Challenger 43.34 43.24 42.25 43.79 43.60 42.65
Coral 38.22 38.09 37.08 38.32 38.10 37.12
F16 57.03 56.94 56.21 58.37 58.25 57.41
House 44.85 44.63 44.39 45.96 45.65 45.48
Planets 78.41 78.29 77.99 78.83 78.60 78.26
LAX 37.49 37.48 36.52 39.18 39.17 38.44
Lenna 34.51 34.24 33.38 35.31 34.97 34.45
Man 63.09 63.05 62.54 61.23 61.15 60.67
Shuttle 49.35 49.27 48.12 50.82 50.67 49.89
Sphere 46.28 46.19 45.67 45.16 45.10 44.37

used to map the coe�cients to positive values.

r(x) =

�
2x if x � 0
2x+ 1 ifx < 0

The above remapping was performed just before the ac-
tual arithmetic encoding of the residue coe�cients. The
contexts were formed using the neighboring coe�cients
and average of the four parent coe�cients similar to the
coding of categories in SPIHT approach. The tail trun-
cation used in CALIC also helps in improving the com-
pression e�ciency. It needs to be emphasized that by �ne
tuning the last threshold of the sorting pass and the max-
imum frequency in arithmetic coding, a modest gain in
compression e�ciency can be achieved.

7. SUMMARY

In this paper, various context models were studied for ef-
�cient encoding of wavelet coe�cients in an EZW-based
lossless image coding framework. Context models from
two state of the art lossless coders (namely SPIHT and
CALIC) were used to study on the improvement in com-
pression e�ciency. The results of compression e�ciency
obtained without and with grouping of signi�cance infor-
mation and context modeling of the residues using CALIC
modeling for two di�erent last thresholds namely 32 and 8
are shown in Table 1, and Table 2. It was observed that
context modeling of signi�cance information in the sorting
and re�nement passes involves the signi�cance of previous
threshold. It was also observed that context modeling of
residue coe�cients based on CALIC coding improved the
compression e�ciency only to a modest extent.
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