
USING BOOSTING TO IMPROVE A HYBRID
HMM/NEURAL NETWORK SPEECH RECOGNIZER

Holger Schwenk�

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, CA 94704-1198

ABSTRACT

”Boosting” is a general method for improving the performance
of almost any learning algorithm. A recently proposed and very
promising boosting algorithm isAdaBoost[7]. In this paper we
investigate if AdaBoost can be used to improve a hybrid HMM/
neural network continuous speech recognizer. Boosting signifi-
cantly improves the word error rate from 6.3% to 5.3% on a test
set of the OGI Numbers95 corpus, a medium size continuous num-
bers recognition task. These results compare favorably with other
combining techniques using several different feature representa-
tions or additional information from longer time spans.

Ensemble methods or committees of learning machines can
often improve the performance of a system in comparison to a
single learning machine. A recently proposed and very promis-
ing boosting algorithm isAdaBoost[7]. It constructs a compos-
ite classifier by sequentially training classifiers while more and
more emphasis on certain patterns. Several authors have reported
important improvements with respect to one classifier on several
machine learning benchmark problems of the UCI repository, e.g.
[2, 6]. These experiments displayed rather intriguing generaliza-
tion properties, such as continued decrease in generalization er-
ror after training error reaches zero. However, most of these data
bases are very small (only several hundreds of training examples)
and contain no significant amount of noise. There is also recent
evidence that AdaBoost may very well overfit if we combine sev-
eral hundred thousands classifiers [8] and [5] reports severe perfor-
mance degradations of AdaBoost when adding 20% noise on the
class-labels. In summary, we can say that the reasons for the im-
pressive success of AdaBoost are still not completely understood.
To the best of our knowledge, an application of AdaBoost to a real
world problem has not yet been reported in the literature either. In
this paper we investigate if AdaBoost can be applied to boost the
performance of a continuous speech recognition system. In this
domain we have to deal with large amounts of data (often more
than 1 million training examples) and inherently noisy phoneme
labels.

The paper is organized as follows. In the next two sections
we summarize the AdaBoost algorithm and our baseline speech
recognizer. In the third section we shown how AdaBoost can be
applied to this task and we report results on the Numbers95 corpus
and compare them with other classifier combination techniques.
The paper finishes with a conclusion and perspectives for future
work.

�new address: LIMSI-CNRS, bat 508, BP 133, 91403 Orsay cedex,
FRANCE, email: schwenk@limsi.fr

1. ADABOOST

AdaBoost, constructs a composite classifier by sequentially train-
ing classifiers while putting more and more emphasis on certain
patterns. For this, AdaBoost maintains a probability distribution
Dt(i) over the original training set. In each roundt the classifier is
trained with respect to this distribution. Some learning algorithms
don’t allow training with respect to a weighted cost function. In
this case sampling with replacement (using the distributionDt)
can be used to approximate a weighted cost function. Examples
with high probability would then occur more often than those with
low probability, while some examples may not occur in the sample
at all although their probability is not zero. Previous experiments
have shown that best results in terms of training time and general-
ization error can be obtained when resampling a new training set
from the original training set after each epoch [10].

After each round, the probability of incorrectly labeled exam-
ples is increased and the probability of correctly labeled examples
is decreased. The result of training thetth classifier is ahypothesis
ht : X!Y whereY = f1; :::; kg is the space of labels, andX is
the space of input features. After thetth round the weighted error
�t of the resulting classifier is calculated and the distributionDt+1

is computed fromDt, by increasing the probability of incorrectly
labeled examples. The probabilities are changed so that the error
of thetth classifier using these new “weights”Dt+1 on the errors
would be 0.5. In this way the classifiers are optimally decoupled.
The global decisionf is obtained by weighted voting. Figure 2
left summarizes the basic AdaBoost algorithm.

In general, neural network classifiers provide more informa-
tion than just a class label: it can be shown that the network out-
puts approximate the a-posteriori probabilities of classes, and it
should be reasonable to use this information rather than perform-
ing a hard decision for one recognized class. This issue is ad-
dressed by another version of AdaBoost, calledAdaBoost.M2[7].
It can be used when the classifier computes confidence scores1 for
each class. The result of training thetth classifier is now a hypoth-
esis2 ht : X � Y ! [0; 1]. Furthermore we use a distribution over
the set of allmiss-labels: B = f(i; y) : i 2f1; :::; Ng; y 6= yig,
whereN is the number of training examples. ThereforejBj =
N(k � 1). AdaBoost modifies this distribution so that the next
learner focuses not only on the examples that are hard to classify,
but more specifically on the incorrect labels against which it is
hardest to discriminate. Note that the miss-label distributionDt

induces a distribution over the examples:Pt(i) = W t
i =
P

i
W t

i

1The scores do not need to sum to one.
2neural networks are usually interpreted as vector functions

~h(x) = (h(x; y1); :::; h(x; yk))
T .



Speech
 Signal

Front End
Signal Processing

Auditory Phone Probability
Estimator

.. .. ..

Spectral−
like
features

Phone
Probabilities

p
b
v
f

0.80
0.12
0.04
0.03Neural Network

HMM Lexicon

c a t

a

o gd

Bigram Grammar

the
a

dog cat

0.20.1
0.3 0.1

Viterbi
Decoder

Words

"the"
"cat"
"is"

Recognized

Figure 1: Block-diagram of the base-line recognizer.

whereW t
i =
P

y 6=yi
Dt(i; y). Pt(i) may be used for resampling.

The final decisionf is obtained by adding together the weighted
confidence scores of all classifiers (see Figure 2).

Input: sequence ofN examples(x1; y1); : : : ; (xN ; yN )
with labelsyi 2 Y = f1; : : : ; kg

Init: letB = f(i; y) : i 2f1; :::; Ng; y 6= yig
D1(i; y) = 1=jBj for all (i; y) 2 B

Repeat: 1. Train neural network with respect
to distributionDt and obtain
hypothesisht : X � Y ! [0; 1]

2. calculate the pseudo-loss ofht:

�t=
1

2

X

(i;y)2B

Dt(i; y)(1�ht(xi; yi)+ht(xi; y))

3. set�t = �t=(1� �t)

4. update distributionDt

Dt+1(i; y) =
Dt(i;y)

Zt
�

1

2
((1+ht(xi;yi)�ht(xi;y))

t

whereZt is a normalization constant

Output: final hypothesis:
f(x; y) =

P
t

�
log 1

�t

�
ht(x; y)

Figure 2: AdaBoost algorithm (version using confidence scores).

AdaBoost has very interesting theoretical properties. In partic-
ular it can be shown that the error of the composite classifier on the
training data decreases exponentially fast to zero as the number of
combined classifiers is increased [7]. More importantly, however,
bounds on thegeneralization errorof such a system have been
formulated [9]. These are based on a notion ofmargin of classi-
fication, defined as the difference between the score of the correct
class and the strongest score of a wrong class. Obviously, the clas-
sification is correct if the margin is positive. This bound on the
generalization error depends only on the complexity of one MLP
and on the distribution of the margins, but not on the number of
combined classifiers. It can be shown that the AdaBoost algorithm
seems to be well suited to the task of maximizing the number of
training examples with large margin, but recent results [8] suggest
that maximization of the minimum margin may not be enough to
explain the good generalization behavior of AdaBoost.

2. THE BASELINE SYSTEM

Our baseline speech recognition system is a hybrid connectionist
system using a large fully connected MLP to estimate the phoneme
a-posteriori probabilities and a hidden Markov model (HMM) for
the time alignment. The basic processing flow is outlined in figure
1 (see [1] for more details). The raw speech signal is first converted
to a more compact feature representation. We use eighth-order
log-RASTA-PLP features computed over 25-ms windows with a
10-ms window step, supplemented with the log energy and delta
features. Then, a fully-connected neural network with one hidden
layer is used to estimate the phoneme a-posteriori probabilities.
The net input consists of 9 consecutive frames, and the softmax
net outputs are interpreted as the a-posteriori probabilities of the 56
possible phonemes. In this paper we use only context-independent
phones. Training is done using stochastic backpropagation with
the cross-entropy error function. The HMM emission probabili-
ties are obtained by dividing the network outputs by the class prior
probabilities. The decoder uses a set of per-word HMMs for mul-
tiple pronunciations and a bigram language model.

In general, the neural network is first trained alone using the
hand-described phoneme labels of the training set. Then the whole
recognizer is run on the training set and we perform a forced align-
ment knowing the whole utterances. This normally changes some
of the phoneme labels, in particular at word boundaries, and the
neural network is retrained on these new labels. This process,
calledembedded training, can be repeated iteratively until the la-
bels and/or word error stabilize (typically 2-3 runs). For some data
bases hand-described phoneme labels are not available. In this case
the neural network is “pre-trained” using another training corpus,
usually TIMIT.

This hybrid NN/HMM speech recognizer usually achieves state-
of-the-art results, but there is some practical evidence that it is dif-
ficult to take advantage of very large speech corpora, e.g. more
than 50h of training data. In contrast to pure HMM-based sys-
tems, adding more training data often does not improve the word
error of the system, even when the number of parameters of the
neural network are substantly increased. In this paper we investi-
gate if AdaBoost’s emphasizing algorithm can be used to improve
the estimation of the a-posteriori class probabilities by the neural
network by focusing training on the difficult and/or informative
examples. For this, we replace the single neural network in figure
1 by an ensemble obtained by boosting (using the AdaBoost.M2
algorithm). Note, that in contrast to previous applications of Ada-
Boost, we are interested in the exact numerical output values, and
not only in a hard decision for one class. However, we are not



0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200
number of parameters (K)

frame error in %

train

test

unboosted
h=400
h=800

0

2

4

6

8

0 200 400 600 800 1000 1200
number of parameters (K)

word error in %

train

test

unboosted
h=400
h=800

Figure 3: Frame (left) and word (right) errors using one unboosted
neural network with varying number of hidden units (solid line),
using several boosted 162-400-56 MLPs (dashed line) and using
several boosted 162-800-56 MLPs (dotted line).

aware of a proof that the outputs of aweighted ensemble of neural
networkscan be interpreted as a-posteriori class probabilities. In
fact, the AdaBoost algorithm tries to increase the margin between
the correct class and the best second one, which over-emphasizes
the posterior probability of the correct class and under-estimates
the ones of the other classes. However this certainly decreases the
search space of the decoder and it potentially can exclude wrong
word solutions that may have be found due to too high posteriors
of wrong phonemes. From the point of view of speech recogni-
tion technology this approach is worth pursuing since it may help
to train hybrid NN/HMM speech recognizers with many more pa-
rameters, and to close by these means the gap between hybrid and
pure HMM-based systems. It is also interesting to see if improve-
ments at the frame level actually decrease the word error. This may
indicate if current research should rather focus on better acoustic
modeling or on better dictionaries and language modeling.

3. EXPERIMENTAL RESULTS

All our experiments have been done with a subset of the Num-
bers corpus that was collected by the Oregon Graduate Institute
in 1995 [3]. It contains continuous number utterances that were
cut out of naturally spoken responses from many different speak-
ers over telephone lines. The 32-word vocabulary is restricted
to numbers including such confusable sets as “four”, “fourteen”
and “forty”. The training set contains almost 2 hours of speech
(610,000 frames). Generalization performance was measured on a
independent test set of about 40 min of speech. This speech corpus
is small enough to allow numerous experiments and it has enough
data to allow statistically significant conclusions. There is also a
small validation set that was used to stop training of the neural
network of the baseline classifier (typically 6-8 epochs). Previous
experiments suggest that early stopping is not crucial for boosted
networks [10], and they were trained for 15 epochs.

The solid lines in figure 3 show the frame and word errors us-
ing one unboosted neural network of varying capacity. Up to 3 runs
of embedded training have been performed. One can clearly see
that increasing the size of the hidden layer, and therefore the num-
ber of parameters, does increase the performance on the training
data, but not on the test set. With more than about 500K param-
eters (corresponds to about 2400 hidden units) the network starts
over-fitting and the test set frame and word error increase.

We first tried to combine 162-400-56 MLPs3 using AdaBoost.

3the notation 162-h-56 describes a fully connected MLP with a 162
dimensional input layer (9 frames with 18 features each),h hidden units

3

4

5

6

7

8

0 200 400 600 800

w
o
r
d
 
e
r
r
o
r
 
i
n
 
%

number of parameters (K)

boosted 162-400-56 MLPs

no embedded training
embedded, 1 run

embedded, 2 runs

3

4

5

6

7

8

0 200 400 600 800 1000 1200

w
o
r
d
 
e
r
r
o
r
 
i
n
 
%

number of parameters (K)

boosted 162-800-56 MLPs

no embedded training
embedded, 1 run

Figure 4: Effect of using embedded training on the word error rates
(test set).

This gives a much lower train and test set frame error (dashed lines
in figure 3 left), but there is no improvement in the word error (3
right). For this reason we combined only nine MLPs (about 800K
parameters in total). We hypothesize that either the 162-400-56
MLPs have not enough capacity to learn the resampled data sets
that get more and more complicated with increasing number of
combined classifiers, or the emphasizing algorithm of AdaBoost
is partially focusing on noisy or wrongly-labeled frames. Using
embedded training on top of the whole boosted ensemble allowed
the adaption of the frame labels to the capacity of this architecture
and we were able to achieve a word error of 5.4% on the test set
using about 500K parameters (see figure 4 left).

When boosting 162-800-56 MLPs without embedded training
the test set word error improves from 6.2% to 5.3% (dotted lines
in figure 3). As shown in figure 4 right, embedded training of
this architecture didn’t change the results further. Note that, in
contrast to other applications of AdaBoost, we still do not reach
zero frame training error, even after combining seven 162-800-56
MLPs. We did not try to combine more neural networks due to the
long training time.

We also believe that it is not advantageous to combine too
many networks in our case since AdaBoost would overfit by fo-
cusing on the noisy and incorrectly labeled examples. In fact, we
are currently working on techniques to make AdaBoost give up
on noisy or “hopelessly difficult” examples. These examples are
mainly at word boundaries where the estimation of frame probabil-
ities is very difficult. During training, these word boundaries are
known and the corresponding examples could be excluded from
the training if they have very small or even negative margins (in-
dicating that they are too difficult to learn). We are also working

and 56 outputs corresponding to the phoneme classes.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1.0
margin

400 hidden units

1
2
5
9

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1.0
margin

800 hidden units

1
2
5
7

Figure 5: Example of margins distributions (1 run of embedded
training)



Table 1: Comparison of different combining techniques (test set word errors).

system:
1 MLP

(RASTA
baseline)

1 MLP
(modspec)

1 MLP
(modspec +
syllables)

4 MLP
at frame

level

2 MLP
syllable

level

6 MLP
(RASTA +
AdaBoost

number
of params:

87K 99K 253K 372K 330K 1050K

word
error:

6.4% 8.5% 10.6% 5.5% 5.4% 5.3%

on dealing with noisy examples in a similar way to support vector
machines. Figure 5 shows some examples of the margins distri-
butions, i.e. the fraction of examples whose margin is at mostx
as a function ofx 2 [�1; 1]. There seems to be some kind of
a fix-point for which the percentage of examples with this mar-
gin does not change (about 0.2 when boosting 162-400-56 MLPs
and about 0.35 when boosting 162-800-56 MLPs). Note in par-
ticular, that even after combining seven 162-800-56 MLPs there
are still examples with a margin of -1.0. This means that the en-
semble gets these examples completely wrong by predicting an
a-posteriori probability of 1.0 for a wrong phoneme and of 0.0 for
the correct phoneme (based on the labels of 1 run of embedded
training). AdaBoost should certainly give up on these hopelessly
difficult examples.

Table 1 compares the boosted MLPs with other combining
technique developed at the International Computer Science Insti-
tute (see [11] for more details). The baseline recognizer using
RASTA features achieves 6.4% word error, while using another
feature representation, the modulation-spectrogram, gives 8.5%
word error. These two feature representations result in quite dif-
ferent error patterns and combining them by multiplying the frame
probabilities gives 5.5% word error. Another approach uses half-
syllables instead of phonemes as output units of the neural net-
work. This system alone has a 10.6% word error rate, which can
be reduced to 5.4% by combining it at the syllable level with the
RASTA base-line system. Boosting achieves the same low error
rates as these systems using only one feature representation. In
addition, there is hope that we could reduce the error rate further
by dealing more explicitly with noise or by using also information
from longer time spans.

An older boosting algorithm has been already used to improve
a hybrid HMM/recurrent neural network speech recognizer [4].
The authors report a relative word error improvement of 10–20%
on subsets of the Wall Street Journal corpus. This boosting algo-
rithm doesn’t use example emphasizing and resampling, but se-
quentially trains neural networks with examples on which the pre-
vious neural networks have an error rate of 50%.

4. CONCLUSION AND PERSPECTIVES

In conclusion, we have shown that the AdaBoost algorithm can be
applied to a very difficult and noisy learning problem: the estima-
tion of a-posteriori probabilities in a hybrid HMM/neural network
continuous speech recognizer. This system performs at least as
well as other combining techniques using several different feature
representations or additional information from longer time spans.

Our experiments suggest that AdaBoost should not be run too
long with noisy training examples. As outlined in the results sec-
tion, we are currently working on different extensions of AdaBoost
for noisy learning tasks. We are also applying this approach to big-

ger speech corpora, in particular “Switchboard.” I would like to
thank Nelson Morgan, Eric Fosler-Lussier, Brian E.D. Kingsbury
and Su-Lin Wu for fruitful discussions and helpful comments.

5. REFERENCES

[1] Bourlard, H. and Morgan, N. (1994).Connectionist Speech
Recognition- A Hybrid Approach. Kluwer Academic Press.

[2] Breiman, L. (1996). Bias, variance, and arcing classifiers.
Technical Report 460, Statistics Department, University of
California at Berkeley.

[3] Cole, R. A., Noel, M., Lander, T., and Durham, T. (1995).
New telephone speech corpora at CSLU. InEurospeech, vol-
ume 1, pages 821–824.

[4] Cook, G., Waterhouse, S., and Robinson, A. (1997). Ensem-
ble methods for connectionist acoustic modelling. InEu-
rospeech, volume 3, pages 1959–1962, ESCA.

[5] Dietterich, T. G. (1998). An experimental comparison of
three methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization.submitted to Machine
Learning

[6] Freund, Y. and Schapire, R. E. (1996). Experiments with a
new boosting algorithm. InMachine Learning: Proceedings
of Thirteenth International Conference, pages 148–156.

[7] Freund, Y. and Schapire, R. E. (1997). A decision theo-
retic generalization of on-line learning and an application
to boosting. Journal of Computer and System Science,
55(1):119–139.

[8] Grove, A. J. and Schuurmans, D. (1998). Boosting in the
limit: Maximizing the margin of learned ensembles. In
Proc. of the Fifteenth National Conference on Artificial In-
telligence. to appear.

[9] Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S.
(1997). Boosting the margin: A new explanation for the ef-
fectiveness of voting methods. InMachine Learning: Pro-
ceedings of Fourteenth International Conference, pages 322–
330.

[10] Schwenk, H. and Bengio, Y. (1998). Training
methods for adaptive boosting neural networks.
Advances in Neural Information Processing Systems,
The MIT Press. in press.

[11] Wu, S.-L., Kingsbury, B. E. D., Morgan, N., and Greenberg,
S. (1998). Incorporating information from syllable-length
time scales into automatic speech recognition. InICASSP, in
press.


