
NOVEL MAPPING OF A LINEAR QR ARCHITECTURE
G. Lightbody�, R. Walke�, R. Woods� and J. McCanny�

DSiP Laboratories, Queen’s University of Belfast, Belfast, N. Ireland�

DERA, St. Andrew’s Road, Malvern, England�

ABSTRACT

This paper presents a novel architecture mapping technique
which was essential in the design of a QR array which forms
the core processor of a single chip adaptive beamforming
system. The mapping technique assigns a QR triangular array of
2m2+3m+1 cells down onto a linear architecture of m+1
processors. The mapping results in a linear systolic architecture
with one hundred percent hardware utilisation, local
interconnects and individual processors for boundary and
internal cell operations. In addition, this paper highlights the
effect latency has on the validity of the linear architecture.

1. INTRODUCTION

Adaptive filters play a key role in applications where the
statistics of the incoming signals are unknown or changing. One
such application is in adaptive beamforming in which the
system aims to suppress signals from every direction other than
the desired “look direction” by forming null steering beams [1].
The weights used to generate these beams are calculated
employing one of a range of adaptive algorithms, such as the
Recursive Least Squares (RLS) or Least Mean Square (LMS)
algorithms. There has been a considerable body of work devoted
to algorithms and VLSI architectures for Recursive least
Squares (RLS) filtering [2,3]. In particular, methods based on
QR-decomposition (e.g. using Given’s rotations) have been
popular as they remove the computational bottleneck caused by
matrix inversion. [4-7]. In addition, the basic structure of the
classical QR algorithm lends itself for implementation on a
highly parallel triangular array processor [4], offering all the
characteristics of a systolic array.

The main focus of this paper is on the use of a novel
architecture mapping technique which was applied in the
development of a QR array processor. This design forms the
core processor of a single chip implementation of an adaptive
beamformer system capable of performing 50 GigaFlops and
consisting of over 5 million transistors [8]. To suit a wide range
of adaptive beamforming applications we have designed a 41
input QR array processor implementing the Enhanced-Squared
Givens rotation algorithm [9]-a derivative of the conventional
square root Givens rotation algorithm. The QR decomposition is
performed on a set of complex input signals necessary to model
the amplitude and phase of the incoming beams. The
implementation of complex arithmetic has a dramatic effect on
the level of computation as complex operations require multiple
instances of real operations. The level of computation is
depicted in the signal flow graphs for the QR cells shown in
figure 8. With current IC technology, a direct implementation of
the full 41-input triangular array (i.e. 861 cells) would not be
practical. Results presented in [8] show that only 35 complex

QR cell processors using a 16 bit floating point wordlength and
0.35 µm technology can fit onto a silicon area of 225mm2.

The purpose of this paper is to present the architecture mapping
technique used to reduce the number of required QR processors
down to a feasible level. It is a novel method developed by
Walke [9], which assigns a triangular array1 of (2m2+3m+1) cells
onto a linear architecture of (m+1) processors. The features of
the resulting architecture are that it requires dedicated
processors for both the QR array operations (unlike [10]), which
are locally interconnected and are used with 100 % efficiency,
thus displaying the characteristics of a systolic array. The
following section demonstrates the architecture mapping
technique applied to a 7 input triangular array example. Section
3 analyses the affects of latency on the validity of the mapping
technique; with the main conclusions presented in section 4.

2. MAPPING THE QR ARRAY

Conventional square-root Givens Rotations is one of a number
of rotation methods which can be used to solve RLS by QR-
decomposition, and can be implemented on a systolic triangular
array processor such as that shown in Figure 1. The QR
decomposition transforms a matrix X and vector y into an upper
triangular matrix R and a vector u by a series of 2-dimensional
Givens rotations, Q. In adaptive beamforming the inputs to the
array (i.e. x1 to x6, and y1) come from snapshots of the signals
received by the system. These enter the array at the top and are
processed down through the cells on each clock cycle. The
rotation is achieved by computing two rotation parameters, a and
b, within a boundary cell such that they eliminate the input xBC

(shown in figure 1). In the process, the R and u values are
updated to account for the rotation. The a and b parameters are
then passed unchanged along the row of internal cells continuing
the rotation. The output values of the internal cells, xOUT,
become the input values for the next row. The elements of the R
matrix and u vector are stored within each of the processors
until updated by the next rotation process. Meanwhile, new
inputs are fed into the top of the array and the process repeats.

The QR array in figure 1, employs a processor for each rotation
operation. Implementing this array would be difficult enough
without even considering the 41 input triangular array desired
for our beamforming applications, (which would result in 861
cells). Therefore, a means is required to reduce the number of
processors by incorporating a method of hardware sharing. The
method we used is a novel assignment technique proposed by
Walke [9] in which a triangular array with 2m+1 inputs (i.e.
2m2+3m+1 cells) is assigned to a linear architecture of m+1

1 The mapping depends on there being an odd number of inputs into the
triangular array, i.e. 2m+1.

processors. This procedure is depicted in the following diagrams
in an example mapping of a 7 input triangular array shown in
figure 1. The resulting linear architecture is shown in figure 5.

2.1 Derivation of linear architecture
1 y(n)x6(n)x5(n)x4(n)x3(n)x2(n)x1(n)

R1,2 u1,7R1,6R1,5R1,4R1,3

u6,7

u4,7
R4,6R4,5

u3,7R3,6R3,5R3,4

u2,7
R2,6R2,5R2,4R2,3

D1,1

D2,2

D3,3

D4,4

D5,5

D6,6

R5,6 u5,7

B

A

cut

x

z
y

xOUT(n)

a, ba, b

xIC(n)xBC(n)

e(n)

α(n)

δout(n)

δin(n)

A cut is made after the m+1th

boundary cell forming two
triangles, A and B.

Internal CellBoundary Cell

Ri,jDi,j a, b

Figure 1: Complex SGR QR Array Signal Flow Graph2

6,74,7

4,6

4,5

3,7

3,6

2,7

5,6

5,7

2m+1

m+1

Move Cells

1,2 1,71,61,51,41,3

3,53,4

2,62,52,42,3

6,6

7,7

5,5

1,1

2,2

3,3

4,4

Triangle B is then mirrored
in the x-axis and moved up
along the z-axis resulting in
a parallelogram shape.

Figure 2: Modified array

1,2 1,71,61,51,41,3

3,53,4

2,62,52,42,3

6,74,7

4,6

4,5

3,7

3,6

2,7

5,6

5,7

1,1

2,2

3,3

4,4

6,6

7,7

5,5Interleave
cells

Triangle B is moved
along the x-axis to above
A, forming the
rectangular array. A
division is drawn along
the x-axis so that equal
numbers of cells are on
either side.

Figure 3: Folded array

The folded array in Figure 3 contains global connections. These
are removed by projection onto a linear array. However, the
connections are also transposed which must be removed first.
This can be achieved by folding the array to interleave the
processors as shown in Figure 4. This fold also places the
boundary cell operations down back on one diagonal. By

2 The D term within the boundary cell processor is R2, this removes the need
for evaluating a square root. Also, in the linear array the last multiplication
(cell 7,7) is performed on the boundary cell.

projecting down the diagonal it is possible to assign all the
boundary cell operations to one boundary cell process and all the
internal cell operations to a row of internal cell processors. The
resulting linear architecture is shown in figure 5.

1, 1

4, 5

3, 6

2, 7

5, 5

1, 2

3, 7

4, 6

2, 2

5, 6

4, 7

1, 3

6, 6

2, 3

1, 4

5, 7

3, 3

6, 7

1, 5

2, 4

7, 7

3, 4

2, 5

1, 6

4, 4

1, 7

2, 6

3, 5

1

s

7

6

5

4

3

2

1

Cell processes
projected onto linear
array of locally
connected processors

Cycle
number

Figure 4: Locally connected linear array

The latches are present on all processor outputs to maintain the
data between operations performed on one diagonal to the next.
The latches for maintaining the parameters within the cells are
also shown. In this case, a total of 7 latches are required; one for
each diagonal of the 2D-array. Multiplexers are present at the
top of the array so that inputs to the QR-array can be supplied to
the cells at the right instances of time. The multiplexers at the
bottom of the figure cater for the different directions of data
flow that occur between rows of the original array (due to the
second fold).

21

δ′

δ

δ

d′

d
x

xa, bOutput

x7(n)

δ1(n) =1 x2(n)x1(n)

3

x6(n)
x3(n)

r

r ′

MUX MUX MUX

MUX

MUX

MUX

MUX

r

r ′
4

MUX

MUX

x5(n)
x4(n)

r

r ′

MUX

Figure 5: 4 cell linear architecture

2.2 Scheduling the QR operations

The order in which operations are performed on the linear array
is identified by the schedule, shown in Figure 4 as the diagonal
lines (referred to as hyperplanes). These cut across the
operations in the array which should be performed at the same
time. The schedule is denoted more compactly in Figure 4 by a
schedule vector, S, normal to the hyperplanes. A valid schedule
is obtained by ensuring that the data required by each set of
scheduled operations is available at the time of execution. This

implies that the data must flow across the schedule lines in the
direction of the schedule vector. This is true in Figure 4 except
for the connections that pass from the bottom of the array to the
top due to the first fold. These dependencies can be removed by
delaying the dependent operations until the data is available.
This results in a delay of one cycle of the array, which can be
easily justified by considering the schedule of the unfolded array
shown in Figure 6(a). Figure 6(b) shows the array and the
schedule with the first fold.

7
6

5
4

3
2

1

1,2 1,71,61,51,41,3

6,7

4,74,64,5

3,73,63,53,4

2,72,62,52,42,3

1,1

2,2

3,3

4,4

5,5

6,6

7,7

5,6 5,7

13
12

11
10

9
8

1,2 1,71,61,51,41,3

3,53,4

2,62,52,42,3

6,74,7

4,6

4,5

3,7

3,6

2,7

5,6

5,7

1,1

2,2

3,3

4,4

6,6

7,7

5,5

13
12

11
10

9
8

7
6

5
4

3
2

1

(b)(a)

Figure 6: Scheduling the array

By continuing the schedule shown in figure 4 for a further 6
cycles we obtain the version shown in figure 7(a). The
highlighted cells show the operations that are performed on each
clock cycle for a specific QR operation. Figure 7(b) shows the
previous and following QR operations interleaved before and
after iteration n=1. To summarise the operation, the first QR
operation begins at cycle =1 then after 7 cycles of the linear
architecture the next QR operation begins. Likewise, after a
further 7 cycles the third QR operation is started.

2,63,51,7

3,62,74,5

3,74,6

4,75,6

5,7

6,7

11

12

13

10

9

8

7

1,1

1,2

1,3

1,42,3

1,52,4

4,4

5,5

6,6

7,7

2,2

3,3

2,51,63,4

x6(1)

y(1)

x 5(1)

x4(1)

x3(1)

x2(1)

x1(1)

6

5

3

4

1

2

3,62,74,5

3,74,6

6,75,6

5,7

6,7

5,5

6,6

7,7

Cycle : sample
n = 2

Cycle : sample
n = 1

Cycle : sample
n = 0

13

12

10

11

8

9

1,1

1,2

1,32,2

1,42,3

1,52,43,3

2,51,63,4

x 6(2)

x 5(2)

x4(2)

x 3(2)

x2(2)

x1(2)

6

5

3

4

1

2

(b)(a)

Figure 7: Interleaved QR iterations

From Figures 7(a) and 7(b) we can see that there are two types
of x inputs into the QR cells. the first type, referred to as
external x inputs, come from the snap shots of data forming the
input X matrix and y vector. These inputs are fed into the linear
architecture every 7, (i.e. 2m+1), clock cycles. The second type
of x input, referred to as internal x input, result from the transfer
of x values from one internal cell to another. For the analysis of
the schedule the x inputs will only be considered as the rotation
parameters are set to input the QR cells at the same time
instances as the internal x inputs.

3 RETIMING THE LINEAR
ARCHITECTURE

The linear architecture discussed so far, (Figure 5), has single
latches present on all processor outputs to maintain data
between operations performed on one cycle to the next. In other
words, the QR cells have a latency of one cycle. The mapping of
the linear architecture is based on this factor. Hence, the
scheduling of the external sample input data will not conflict
with the internal cycles of x inputs. However, the inclusion of
real timing issues may affect the validity of the linear array
mapping. The arithmetic processors used to build the QR cells,
such as multiplication and division, need to be pipelined to meet
the timing performance demands of the circuit. These pipe
stages incur a latency in the QR cells, as shown in the figure
below.

7 13

1
d 7

R
1

R
1

2

G
5

5

*

22

δout (26)

δin

11

11

2

13

11

dnew

dold

b (13)

Recursive
loop

Recursive
loop

a (13)

xBC

7 13

R
1

2

5

Latency(13)

xout (13)

3

13

73
3

b (13)

a (13)

xIC

112

3

b

a

Internal CellBoundary Cell

Key:

Special multiply
function

G
5

c(a-jb)

c(a2+b2a+jbRounderR
1

Shift multiply
1

Delays

Complex

Real

Extended
precision

r new

r old

Figure 8: Retimed QR cells

The latency of the internal cell in producing the x output can be
expressed generically as the term l. The latencies of the
boundary cell in producing the rotation parameters and delta
output are therefore l and 2l respectively. Figure 9 shows how
these latencies will affect the schedule of the linear architecture.

1,3

1,42,3

2,2

1,1

1,2

x4(1)

x3(1)

x2(1)

x1(1)
time

2l

3l

0

l

0

2l

3l

2l

3l

l

1

Figure 9: Effect latency has on the schedule

The latency of the QR cells has caused a complete shake up of
the scheduling of the linear architecture. Looking at figure 7 we
can see that iteration n=2 begins 7 clock cycles after the start of
iteration n=1. However, the introduction of processor latency
stretches out the scheduling diagram such that the n=2 iteration
begins after 7l clock cycles. In this example the latency term l is
13. Therefore the second iteration would be beginning after 91
clock cycles. This is obviously not an optimum use of the linear
architecture as it would only be in use every 13th clock cycle.
Therefore, we need to introduce the new samples at a much
faster rate. This factor is referred to as the number of clock
cycles between successive external x inputs, Text. The latency
within the recursive loop of a QR cell determines the minimum
value of Text. In this example, (figure 8), the latency within the
recursive loops for both types of QR cell is 4 clock cycles. Thus
new samples could theoretically be fed into the linear
architecture every 4th clock cycle. However, we need to ensure
that increasing the rate of inputting external x inputs will not
produce an invalid schedule. For example, if Text was set to 7
and l to14 then there would be a collision of input data into the
boundary cell after 28 clock cycles, as depicted in figure 10.

2,21,1

x1(5)x1(4)x1(3)x1(2)

28

x1,2(1)x1(1)

21147Time: 0

1

Figure 10: Invalid schedule

Another point to note is that the schedule of inputs has been
stretched leaving gaps. The main objective was to ascertain the
optimal combination of l and Text which ensured a valid
schedule and 100% hardware utilisation. A MATLAB program
was written to mathematically model the times for each input
into each cell of the linear array. Tests were then carried out for
input collisions and processor usage over a range of values of l
and Text. The optimal values were used to finalise the timing of
the linear architecture. The array was then modelled using
Cadence’s SPW™ tool. This allowed a quick validation of the
scheduled inputs and control signals. The model was then
simulated to confirm that its operation conformed identically
with that of the original triangular array. This was the case.

4 CONCLUSIONS

The programs analysing the scheduling of the linear architecture
have proven to be key tools in the design process. Retiming
mapped architectures is an iterative process of retiming the QR
cells, the linear architecture, then back again to the cells. The
process is then repeated until an optimum solution is obtained.
Then, with the addition of a single multiplexer the scheduling
may be invalidated and the whole retiming process needs to
begin again.

The choice of processor latency and scheduling are essential to
the performance of the linear architecture. In the example shown
the optimum value for Text is 7, and for l is 13. These values
produce a fully 100% utilised linear architecture. However, if
the latency term l was reduced to, for example, 3 and the Text

was set to 21 then there would be gaps left within the schedule.
These spaces could be filled by performing 2 additional

independent QR operations almost in parallel with the initial
one all on the same linear processor. So just by altering the
schedule of the linear architecture a limited range of
implementations are available.

The linear architecture offers characteristics of a systolic array.
Firstly, there are two distinct processors for boundary and
internal cell operations which enables the circuits to be
optimised for a specific function. However, the disadvantage is
the work needed to design and interface both VLSI circuits.
Secondly, the linear architecture cells have only local
interconnections with local storage within the QR cells.

The research within in this paper is part of a project to design
cores to build a single chip for a rapid implementation of
adaptive beamformer systems on silicon. To demonstrate their
functionality a single chip beamformer is being implemented.
The core of the design is using a linear architecture
incorporating 21 QR processors, and processing up to 41 inputs.
It consists of approximately 5 million transistors and has an area
less than 200 mm2 with a performance of 50 GigaFlops. The
implementation is readily scaleable to meet the specific
requirements of the application. The full beamformer system is
currently being implemented and further details will be
presented in due course.

5 REFERENCES
[1] L. C. Godara, “Application of antenna arrays to mobile

communications, part II: Beam-forming and direction-of-
arrival considerations”, Proc. of the IEEE, Vol. 85, No. 8, pp.
1195-1245, Aug. 1997.

[2] Kalouptsidis and Theodoridis, Adaptive System
Identification and Signal Processing Algorithms, Prentice
Hall, Englewood Cliffs, NJ, 1993

[3] S. Haykin, Adaptive Filter Theory, Prentice Hall: Englewood
Cliffs, NJ, 1986.

[4] W. M. Gentleman and H. T. Kung, “Matrix triangularisation
by systolic array”, Proc. SPIE (Real-Time Signal Processing
IV), pp.329-369, 1973.

[5] J. G. McWhirter, “Recursive least squares minimisation
using systolic array”, Proc. SPIE (Real-Time Signal
Processing IV), vol. 431, pp. 105-112, 1983.

[6] J. M. Cioffi and T. Kailath, “Fast recursive-least-square,
transversal filters for adaptive filtering,” IEEE Trans.
Acoustics, Speech, Signal Processing, vol. ASSP-32, No. 2,
pp. 998-1005, 1984.

[7] S. F. Hsieh, K. J. R. Liu and K. Yao, “A Unified Approach
for QRD-Based Recursive Least-Squares Estimation without
Square Roots”, IEEE Trans. On Signal Processing, Vol. 41,
No. 3, pp. 1405-1409, March 1993.

[8] G. Lightbody, R. Walke, R. Woods, J. McCanny. “Rapid
Design of a Single Chip Adaptive Beamformer”, IEEE Proc.
on Signal Processing Systems, to be published October 1998.

[9] R. L. Walke, High Sample Rate Givens Rotations for
Recursive Least Squares, Thesis, University of Warwick, 1997

[10] C. M. Rader, “MUSE: A systolic array for adaptive nulling
with 64 degrees of freedom using Givens transformations and
wafer scale integration”, Proc. of the Int. Conf. Of Application
Specific Array Processors, pp. 277-291, 1992.

