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ABSTRACT

The vector constant modulus algorithm (VCMA) was
recently introduced as an extension of CMA which can
equalize data from shaped sources having nearly Gaussian
marginal distributions. Some simple changes in the struc-
ture of VCMA allow it to be used in fractionally-spaced
equalizers with their attendant benefits. Although devel-
oped with shell mapping in mind, VCMA can also equal-
ize data from other shaping methods such as trellis shaping.
Furthermore, the vector modulus concept from VCMA can
be successfully applied to other algorithms based on con-
stant modulus criteria, including RCA and MMA. Simula-
tions have verified all of these results.

1. INTRODUCTION

The constant modulus algorithm (CMA), first described in
[1] and [2], is a popular algorithm for blind equalization in
digital communication systems. The convergence of CMA,
however, slows down and eventually fails as the source
data approaches a Gaussian distribution [3]. Unfortunately,
an approximately Gaussian source is precisely the goal of
source shaping techniques which increase system perfor-
mance using non-equiprobable signaling.

Source shaping is able to provide gain, independent of
coding, by using efficient constellation shapes. In two di-
mensions, a circular constellation has an inherent shaping
gain of about 0.2 dB over the more traditional square. By
choosing signal points from uniform spherical constellations
in higher dimensions, higher gains are possible, approach-
ing 1.53 dB for the shaping gain of anN -dimensional sphere
over anN -dimensional cube asN !1. In the limit, this is
equivalent to imposing a Gaussian distribution on the two-
dimensional signal points.

As shaped signal constellations become more common,
an alternative blind equalization algorithm is clearly needed.
The vector constant modulus algorithm (VCMA) [4] was re-
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cently introduced as an extension of CMA which can equal-
ize data from sources having nearly Gaussian marginal dis-
tributions. Source shaping is assumed to be accomplished
by choosing signal points uniformly distributed in a2N -
dimensional sphere and transmitting them as a sequence of
N complex values. (In the case of shell mapping, discussed
later, this is in fact how the shaping is done.) Vectors ofN
successive samples should be distributed uniformly in2N -
dimensional space, so a version of CMA which operates on
vectors of the received samples should be able to equalize
the shaped data. This is the key insight which explains how
VCMA works.

2. THE VECTOR CONSTANT MODULUS
ALGORITHM

Consider a complex baseband model of a digital communi-
cation system. The transmitted data sequencefang con-
sists of independent, identically distributed symbols cho-
sen from a signal constellation with symmetries satisfying
E[a2n] = 0. The transmitted sequence is filtered by a chan-
nelh and passed through an equalizerc. The equalizer out-
put isz = y � c wherey = a � h is the channel output.

an = [an an�1 � � � an�N+1] is a vector ofN transmit-
ted complex signal points corresponding to a point in the
2N -dimensional uniform constellation.
zn = [zn zn�1 � � � zn�N+1] is a vector ofN output sam-
ples from the equalizer, and is calculated byzn = Y0

ncn,
where
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andLc is the number of equalizer taps. Note there here we
have implicitly assumed a baud spaced equalizer; a frac-
tionally-spaced example is given in the following section.

VCMA uses a cost function identical to that of CMA
except that a vector modulus is used:

CFVCMA = E(jznj
p �Rp)

2 (2)



where

Rp =
Ejanj

2p

Ejanjp
(3)

is a constant dependent on the signal constellation, which
acts as a scaling factor for the equalized data.

A stochastic gradient update with step size� is used to
update the filter coefficients.
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The derivative is calculated as�
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using the result
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Finally, the expectation is dropped to obtain the desired tap
update equation

cn+1 = cn � �Y�

nznjznj
p�2(jznj

p �Rp) (7)

with step size�. p is normally set to2 for computational
convenience. The equalizer taps are updated every symbol
period. Under these conditions, the computational cost of
VCMA is surprisingly low. If all data values are kept in
memory between tap updates, several computational short-
cuts are possible, most significantly the recursive update of
the productY�

nzn. The end result is a cost of14Lc + 5
real multiplications and14Lc + 3 real additions per sym-
bol period, which is only about 50% more expensive than
conventional CMA.

3. FRACTIONALLY-SPACED VCMA

It is often desirable to use an equalizer with taps spaced
at some fraction of the data symbol periodT , most com-
monlyT=2. A fractionally-spaced equalizer (FSE), as this
configuration is termed, has the extra degrees of freedom
necessary to perform additional filtering operations such as
matched filtering and adjustment of sampling phase. More
recently it was shown that while an ordinary baud-spaced
equalizer of arbitrary length cannot perfectly equalize a gen-
eral FIR channel, a CMA FSE of length equal to or greater
than the channel delay spread can achieve global conver-
gence given some simple channel restrictions [5]. For these
reasons, fractionally-spaced equalizers are now the norm in
most applications.

In a FSE, the channel is sampled at the desired mul-
tiple of the symbol rate and the equalizer output is calcu-
lated only atT -spaced intervals to obtain the equalized data.

Clearly, when an adaptive algorithm like CMA is used with
a FSE, the tap update operation should be performed not
more frequently than at time intervals ofT to avoid over-
constraining the filter output, since only the decimated rate
1=T equalizer output is of interest. When applied to VCMA,
this requires some simple changes in the structure of the
computations. Recall that the equalizer output vector is
zn = Y0

ncn, with the rectangular matrixYn given by (1)
for the baud-spaced case. For aT=2-spaced FSE, the sam-
ples entering the equalizer need to beT=2-spaced, so each
column ofYn should beT=2-spaced. The equalizer output
vectorzn, however, needs to beT -spaced, so each row of
Yn should beT -spaced. Thus, for aT=2-spaced FSE, we
have

Yn =
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Simulations performed with FSE VCMA have verified its
ability to equalize several short FIR channels with a re-
quired equalizer length comparable to the channel delay
spread.

4. APPLICABILITY TO DIFFERENT SOURCE
SHAPING METHODS

Shell mapping is the most common source shaping tech-
nique in current use and is the shaping method chosen for
the latest telephone modem standards [6]. In shell mapping,
a two-dimensional circular constellation is divided intoM
rings of increasing energy, with each ring having an equal
number of points and a cost label proportional to the en-
ergy of the points. Now consider the2N -dimensional set
of points described by combinations ofN points in the
original two-dimensional constellation. Shell mapping pro-
vides an efficient way to select the2b lowest-cost signal
points from this higher-dimensional set. The cost is deter-
mined by adding theN individual ring costs, and the sub-
constellation selected by shell mapping is nearly a sphere
in 2N dimensions. Then,b bits can be sent usingN of the
two-dimensional signal points transmitted in sequence.

The applicability of VCMA to shell-mapped data is
rather intuitive: By using vectors of the received signal
points the algorithm is able to operate on a uniform distri-
bution of signal vectors and get around the problem of the
almost-Gaussian distribution of signal points in two dimen-
sions [4]. By this reasoning, any shaping technique which
achieves non-equiprobable signaling by projecting points
from a higher-dimensional uniform constellation should
produce data equalizable by VCMA.

A different shaping approach, trellis shaping, was de-



scribed by Forney in [7]. In contrast to shell mapping, which
chooses points in a spherical constellation of finite dimen-
sion, trellis mapping searches the trellis of a convolutional
code to find the lowest-energy sequence from a larger set
of possible transmitted sequences. It is not possible to de-
scribe this operation in a specific, finite-dimensional space,
but simulations (presented later in this paper) have shown
that VCMA is able to equalize trellis-shaped data. It is hy-
pothesized that the required data vector lengthN in VCMA
is determined by the effective dimensionality of the convo-
lutional code used for shaping.

5. GENERALIZATION TO RELATED
ALGORITHMS

The vector modulus concept from VCMA can be applied
to other blind equalization algorithms having cost functions
similar to CMA. For example, the reduced constellation al-
gorithm (RCA) proposed in [8] uses the cost function

CFRCA = Ejzn �Rcsgn(zn)j
2 (9)

where csgn is the complex sign function which returns one
of the values inf1+ j; 1� j; � 1+ j; � 1� jg according
to the quadrant occupied byzn. This cost function attempts
to fit the received constellation points to the corners of a
square. Although reportedly more prone to misconvergence
than other algorithms in the same family [9], RCA is simple
to implement and has the advantage of correcting for car-
rier phase, since unlike CMA the cost function is sensitive
to constellation rotation. A vector RCA (VRCA) is eas-
ily derived by using vector quantities in place of the scalar
quantities.

CFVRCA = Ejzn �Rcsgn(zn)j
2 (10)

The complex sign function csgn returns a vector the same
length asz on an element-by-element basis. VRCA will
therefore attempt to fit vectors of received symbols to the
corners of a hypercube. The update equation for VRCA is

cn+1 = cn � �Y�

n(zn �Rcsgn(zn)) (11)

Computationally, VRCA is very similar to VCMA. A
principal advantage of RCA over CMA, its ability to cor-
rect a carrier phase offset, may or may not be a factor with
VRCA depending on the type and degree of shaping used
for the signal constellation. Shaped constellations are of-
ten sufficiently circular that VRCA will not be sensitive
to constellation rotation. On the other hand, in trials with
lightly trellis-shaped data, enough “squareness” remained
for VRCA to correct for carrier phase offsets.

A similar derivation and experiments have been carried
out with a vector version of the multimodulus algorithm
(MMA) described in [10]. Simulations yielded results much
like those for VRCA, and similar comments apply.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 1: Equalized trellis-shaped data using VCMA
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Figure 2: Equalized trellis-shaped data using VRCA

6. SIMULATIONS

An extensive set of simulations was performed using frac-
tionally-spaced VCMA and VRCA, and a few of the results
are shown in the figures. In all of the cases presented here,
the length of the equalizerLc was eight taps, the input vec-
tor lengthN was eight, and aT=2-spaced FIR system

h = [0:5; 0:05; 0:1 + j0:4; � 0:4; 0; 0:2� j0:2] (12)

was used as the channel model. Two source data sets, each
of length 160,000 samples, were duplicated as many times
as necessary at the input of the simulation to provide for the
required number of iterations. The first data set was gener-
ated by the shell mapping algorithm using a 192-point con-
stellation divided into six rings. Each mapping operation
used 36 bits to address one of236 points in 16-dimensional
space, generating an output of eight complex symbols. This



data is quite highly shaped with a kurtosis� of 1.75 using
the definition

�x =
Ejxj4

(Ejxj2)2
(13)

wherex is a complex random variable (other definitions of
kurtosis are in common use). Under this definition, a com-
plex Gaussian source has� = 2, a uniformly distributed
source has� = 1:4, and sub-Gaussian sources have kur-
toses between these two extremes. A real-valued Gaussian
source has� = 3, a somewhat more familiar result.

The second data set was generated by a simple trellis
shaping implementation using the convolutional code[1 +
D2; 1 + D + D2] and 256-QAM for the base constella-
tion. The Viterbi algorithm memory was allowed to span
the entire 160,000 samples. This data has kurtosis� = 1:64
using the definition above and is less highly shaped than the
shell-mapped data.

Figure 1 is a plot of equalized data points near the end
of a 480,000 iteration run ofT=2-spaced VCMA on trellis-
mapped data through the channel described above. The step
size was� = 10�6. As expected, an equalizer of length
comparable to the channel is able to equalize the data. Al-
though an input data vector lengthN of 8 was used for
this trial,N values as low as 3 or 4 still allowed successful
convergence. Similar results were obtained with an iden-
tical simulation on shell-mapped data. Comparison trials
usingT=2-spaced CMA either failed completely or had a
tendency to drift in and out of good equalization.

Figure 2 shows the equalized data points resulting from
a vector reduced constellation algorithm (VRCA) trial of
480,000 iterations with step size� = 10�5 using the trellis-
shaped data set. Comparing this with Figure 1, we see that
the rotation-sensitive nature of the VRCA cost function al-
lowed the algorithm to correct for the constellation rotation
which VCMA ignores.

7. CONCLUSION

The vector constant modulus algorithm, first developed in a
baud-spaced equalizer framework with shell-mapped source
data, has been shown effective in other scenarios as well.
Its ability to work with fractionally-spaced equalizers and
its modest computational cost over CMA make it viable for
use in the increasing number of data communication appli-
cations which use source shaping. The success of VCMA
with both shell-mapped and trellis-shaped data suggests that
it will work with data produced by other shaping methods
as well. The key concept of using a vector modulus in order
to present uniformly-distributed data to the underlying al-
gorithm seems to be valid even when the source data is not
generated from a uniform constellation of a particular finite
dimension. This concept is sufficiently general to be applied
to other algorithms based on constant modulus criteria.

Additionally, following the traditional convergenceanal-
ysis for CMA, a proof has now been developed showing
VCMA to be globally convergent to a perfectly equalizing
setting when the equalizer is infinitely parameterized; this
can be found in [11].
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