
QUANTIZATION NOISE ANALYSIS OF WAVE DIGITAL AND
LOSSLESS DIGITAL INTEGRATOR ALLPASS/LATTICE FILTERS

Johnny Holmberg, Lennart Harnefors

Dept. of Electrical Engineering
Mälardalen University
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ABSTRACT

Quantization noise levels of two low-sensitive
allpass filter structures, namely wave digital cir-
culator filters (WDCF) and lossless digital in-
tegrator filters (LDIF), are compared. Allpass
filters are of interest for design of lowpass and
bandpass lattice filters. The results show, pri-
marily, that second-order LDIFs have lower to-
tal quantization noise gains than corresponding
WCDFs for any pole configuration within the
right half-circle of the z plane. The benefit of
using ladder LDIFs rather than cascaded first and
second order sections is also demonstrated.

1. INTRODUCTION

Digital lattice filters1 consist of two parallel con-
nected allpass filters [1]. They can be designed
as odd order elliptic, Butterworth, or Chebyshev
lowpass filters. A highpass function can also
be obtained in the same structure by using the
power complementary output. In the same way,
two times odd order bandpass and bandstop fil-
ters can be obtained. Thus, these filters are use-
ful, among other things, for bandsplitting. Lat-
tice filters have low sensitivity in the passband,
which is often very beneficial, since the num-
ber of bits of the multiplier coefficients can be
reduced without significant deterioration of the
magnitude function [2].

The allpass filters are normally realized using
wave digital (WD) filter techniques [3]. Most
commonly used is the wave digital circulator
filter (WDCF), which consists of cascade con-
nected allpass adaptors. The advantage of this
type of structure is that it has only one multiplier

1Not to be confused with the Gray–Markel lattices.

in the critical loop, provided that three-port adap-
tors are employed [4]. Thus, maximal speed can
be achieved in a hardware implementation [2].

Another way of realizing the allpass filters are
via lossless digital integrator (LDI) structures.
This was first introduced in [5]–[7], but the filters
had, unfortunately, two multipliers in the critical
loop. In [8] this was circumvented by changing
the locations of the multipliers, thus reducing the
critical loop to one multiplier only. The structure
was further modified in [9], by interchanging de-
layed and non-delayed integrators, in order to
eliminate overflow limit cycles [10]. The struc-
ture in [9] is considered in this paper.

WD and LDI lattice filters (both with one mul-
tiplier in the critical loop) were compared in [8],
where properties such as response to coefficient
quantization, noise gain, and sensitivity were in-
vestigated. A well known fact is that the noise
gain of a digital filter is of great importance, as
it affects the signal to noise ratio (SNR) at the
filter output. The noise gain problem has been
investigated during several decades. A signifi-
cant result of [8] was that, for certain test filters,
the total noise gain at the output of the LDIF was
much lower than for the WDCF.

In this paper, analytic noise gain expressions
are established, for filter orders one and two. This
allows more general conclusions to be drawn as
compared to numerical analyses of test filters.

2. MAIN RESULT

Signal quantization is most commonly made di-
rectly after each multiplier. Zero input granular-
ity limit cycles then often arise, however, for filter
orders higher than one. By placing the quantizer
after the adder following a multiplier, the risk for



this undesirable phenomenon can be reduced, if
magnitude truncation is used [10].

A quantization introduces an error which is
in general modeled as a white noise source with
variance �2

e [10]. The noise variance at the filter
output resulting from only one noise source is

�2
e

Z 1=2

�1=2
jHi(e

j2��)j2d�; (1)

where Hi(z) is the transfer function from noise
source i to the output and � is the normalized fre-
quency. The various quantization noise sources
are, following common practice, assumed inde-
pendent of each other and can thus be analyzed
by superposition. The total noise gain (TNG),
G, is defined as

G =

NX
i=1

Z 1=2
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j2��)j2d�; (2)

where N is the number of noise sources. Thus,
the total noise variance at the output is G�2

e.
When using the wave digital circulator tech-

nique for realization of lattice filters, the allpass
filters are realized as a chain of first and second
order sections. The former consist of two-port
and the latter of three-port adaptors. When us-
ing LDI building blocks, the same principle can
be followed (although this is, as we shall see,
not the best available approach). Therefore, first
and second order LDI and WD allpass filters are
analyzed in this section, which allows analytical
noise gain expressions to be derived.

2.1. First Order Filters

The filter structures compared are depicted in
Figure 1. The WDCF is, in fact, just a two-port
adaptor. Plus and minus signs in the WDCF,
i.e., usage of a delay with and without a sign
inverter, correspond to usage of a capacitor and an
inductor, respectively, in the prototype network.
Let us label these two variants WDCF–C and
WDCF–L. In the following, where “�” occurs,
the plus sign corresponds to WDCF–C. Since the
filter order is one, no granularity limit cycles can
occur if magnitude truncation is used. Therefore,
quantization is made directly after the multiplier,
as indicated by the noise source e(n). With �1 =
1 � a1, both structures realize the same allpass
transfer function, (1�a1z)=(z�a1), fromu to y.
The transfer functions from the noise sources to
the output are z=(z�a1) and (z�1)=(z�a1), for
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Figure 1: First order allpass filter structures.

the LDIF and the WDCF respectively, yielding
the following TNGs:

GLDI =
1

1 � a2
1

; GWD =
2

1 � a1
: (3)

The functions are depicted in Figure 2. The
preferable structure, depending on the pole lo-
cation, is obvious.

2.2. Second Order Filters

The structures compared are depicted in Figure 3.
Quantization is in this case made after the adder
following a multiplier. The WDCF is a paral-
lel three-port adaptor. (A series adaptor can be
used as well, however, at the expense of an extra
quantizer.) The two structures realize the same
transfer function from input to output if 1 = �1

and 3 = (4�2�1��2)=2. It is assumed that the
poles are complex-conjugated, z = re�j� . The
coefficients can then be expressed as �1 = 1�r2

and �2 = 1+ r2 � r cos �. Evaluating (2), using
residues, yields

GLDI =
2

(1 � r2)(1 + 2r cos � + r2)
;

GWD =
2

1 � r2
; (4)
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Figure 2: Noise gains for first order LDIF
(solid), WDCF–C (dashed), and WDCF–L (dash-
dotted).

giving the following relative noise gain:

GLDI

GWD
=

1
1 + 2r cos � + r2

: (5)

A plot of this relation is shown in Figure 4. The
result tends to agree with the comparison LDIF
vs. WDCF–C for the first order case. For any
pole location within the right half-circle of the z
plane—and also for some in the left half-circle—
the LDIF has a lower noise gain than the WDCF.
However, unlike the first order case, using delays
with sign inversion does not alter the noise gain,
due to structural symmetry. The LDI structure
therefore has a clear advantage in this case.

2.3. LDI Filters of Higher Order

While it is possible to realize higher order LDI
allpass filters as a chain of cascaded first and sec-
ond order sections, a generally better approach is
to extend the LDI structure by additional inter-
connected integrators. This is known as an LDI
ladder network; see Figure 5. This approach can
be used for any filter order without increasing be-
yond one the number of multipliers in the critical
loop.

Since analytical expressions are now much
more difficult to obtain than for orders one
and two, we in this paper restrict the analy-
sis to numerical evaluations. The allpass fil-
ters considered are both of order three with
poles at z = f0:32; 0:19 � j0:86g (AP1) and
f0:80; 0:90� j0:32g (AP2), respectively. Natu-
rally, WDCF–L is used for the first order WDCF
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Figure 3: Second order allpass filter structures.

allpass sections. The following total noise gains
are obtained.

AP1 AP2
WDCF: 2:55 6:06
Cascaded LDIF: 1:30 2:25
Ladder LDIF: 0:38 0:80

The benefit of using the ladder approach is ob-
vious, as is the benefit of using LDI rather than
WD realization of a filter of this type.

3. CONCLUSION

In this paper, lossless digital integrator and wave
digital circulator realizations of allpass filters
were analyzed with respect to quantization noise.
Suitably designed, two allpass filters can be
added to form a lattice lowpass or bandpass filter.

For first order filters, it was shown that WDCFs
realizations are preferable for pole locations in
0:5 < jzj < 1, while LDIFs are preferable for
jzj < 0:5.

For second order filters, it was shown that for
all pole locations in the right half-circle of the
z plane (and for certain pole location in the left
half-circle as well), the LDI structure yields a
lower level of quantization noise at the output
than the WD structure.

It was further indicated—numerically—that
for most (if not all) allpass filters of orders higher
than two, a ladder structure is preferable to a
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Figure 4: Relative noise gain, GLDI=GWD, for
second order allpass filters.

3

u(n)
α1

D

α2

D

y(n)

α

...

...

3

e (n)(n)1e
D D

Figure 5: LDI ladder allpass filter of arbitrary
order.

structure of cascaded first and second order sec-
tions.

The results in this paper have striking similar-
ities to those presented in [9]. In [9] it is found
that overflow limit cycles will not occur in the
LDI allpass structure in Figure 5 if the pairwise
sums of the coefficients are less than two, i.e.,
�1 +�2 < 2, �3 +�4 < 2, etc. This is shown in
[9] to correspond mainly to pole locations within
the right half-circle, i.e., where the second order
LDIF has good noise properties. These two re-
sults indicate that allpass/lattice LDIFs in many
cases are strong contenders to wave digital all-
pass/lattice filters.
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