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ABSTRACT

We observe that the channel matrix in the standard mul-
tiuser, multichannel (MIMO) digital communications model
is linear in the channel coe�cients. Also, recent work incor-
porating \basis functions" suggests that the multipath chan-
nel itself is in a subspace formed by delayed versions of the
transmission pulse. Hence the channel matrix is linear in
the coe�cients of this subspace. We propose two algorithms
based on the sample covariance matrix of the received signal
(i.e., second-order statistics) that take advantage of this lin-
ear parameterization: a new identi�cation algorithm that es-
timates the outer product of the model coe�cients via multi-
plication by a predetermined matrix, and a multiuser version
of the previously presented \subspace method" that employs
knowledge of the transmission pulse. While both methods are
superior to the original non-parameterized subspace method
in terms of computation and performance, the new method
requires less computation and in some cases outperforms the
other.

1. INTRODUCTION

We consider a digital communications system employing mul-
tiple antennas to receive a �xed, known number of linearly
modulated information sequences transmitted over di�erent
multipath channels. The multipath channels are assumed to
be unchanging in time over a small number of symbols. Fur-
thermore the channels are assumed to be made up of a small
number (< 10) of propagation paths incurring delays uni-
formly distributed between 0 and the time delay spread, and
that the delay spread is a non-negligible fraction of the sym-
bol interval (large enough to not be considered \at"). With
this very speci�c type of channel model, each multipath chan-
nel (between a given user and antenna) is well approximated
by a small number of delayed versions of the transmission
pulse, the delays �xed and uniformly spaced across the du-
ration of the multipath time delay spread. This model has
been shown to be appropriate [6] for certain TDMA cellular
standards used in practice, namely IS-136.
In the standard decomposition of the received data matrix

into channel matrix times information symbol matrix plus
noise X = HS + N, the channel matrix H is linear in the
elements of the channel vector. Since the channel vector is
in the span of a known basis, there is a corresponding set
of known basis matrices for the channel matrix H, i.e. H is
linearly parameterized. This new way of thinking about the
channel matrix has lead us to a new algorithm and to the
reformulation of an existing algorithm.
A classic method for blind channel identi�cation is the
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\subspace" method of [4], which is based on the noise sub-
space of the received data space-time correlation matrix.
This method has the advantageous ability to provide the ex-
act channel when there is little or no noise, even for a rela-
tively small number of symbols. However, the original sub-
space method doesn't use any knowledge of the basis func-
tions. Also the method su�ers when the channel matrix be-
comes ill-conditioned due to the simultaneous decay of the
channel impulse responses, which is exactly what happens
when a common transmission pulse is used.
The subspace method was modi�ed to take advantage of

the knowledge of the transmission pulse in [2]. In our paper,
using the linear parameterization of the channel matrix, we
derive essentially the same algorithm. However we take ad-
vantage of oversampling in a way not addressed in [2]. In par-
ticular, with P times oversampling, the P \virtual" channel
responses for a given antenna, although in di�erent subspaces
formed by the P polyphase components of the delayed trans-
mission pulses, have the same coe�cients. While this leads
to slightly less computation (since in the end we estimate
P times fewer parameters), our initial experience does not
indicate much of a performance enhancement.
We also present a new algorithm based on the expected

form of XXH ((:)H represents conjugate transpose). The
outer-product matrix HHH is in the span of the outer-
products of the basis matrices of H, where the coe�cients
are products of channel coe�cients. Hence by simply solving
a linear system, we can construct a matrix whose dominant
eigenvector is made up of the coe�cients of the channel in
the known basis set.
The subspace method has been extended to multiple users

in [1] and briey outlined in [5]. For multiple users, inde-
pendent linear combinations of the di�erent user's channels
are estimated. Inverting these channel estimates yields (ap-
proximately) instantaneous mixtures of the di�erent user's
channels that can be separated via various techniques, not
addressed in this paper. Note that we are solving the prob-
lem of �nding the unknown channel coe�cients assuming an
FIR model; we do not here address recovery of the informa-
tion symbols (equalization).
In this paper, we �rst review the assumed communications

system model which results in a linear relationship between
the information symbols and the received data. We then
develop the linear parameterization of the channel matrix,
and present the two aforementioned algorithms. Finally, we
provide numerical simulation results and discussion.

2. SYSTEM DESCRIPTION

We consider a communications system in which there are d
users transmitting independent white information sequences
s(m)[n];m = 1; :::; d. This work assumes the channel duration
is known to be approximately L symbol intervals, based on
the known delay spread and pulse shape. The signals are



received at an antenna array of M sensors and digitized at P
times the baud rate, so the length L snapshot vector for the
i-th antenna, p-th polyphase component, at time index n is

xip[n] =

dX
m=1

H
(m)
ip s

(m)[n] + �ip[n]

This vector is made up of additive �ltered user sequences
s(m)[n] = [s(m)[n]; : : : ; s(m)[n� (2L�2)]]T , and a noise term.
See [3] for a more detailed description of the system.
Representing the channel coe�cients for the i-th antenna,

p-th polyphase component, and m-th user in the L� 1 vec-

tor h(m)
ip [k] we have the �ltering matrix of the form H

(m)
ip =

TL(h
(m)
ip ) where

TL(h) =

0
B@

h[0] � � � h[L� 1] 0 � � � 0
0 h[0] � � � h[L� 1] � � � 0
...

. . .
. . .

. . .
. . .

...
0 0 0 h[0] � � � h[L� 1]

1
CA :

All of the channel snapshots for a given time index n are
stacked on top of each other to form an LMP � 1 vector

x[n] = [x1;1[n]
T ;x1;2 [n]

T ; :::;xMP [n]
T ]T

with a similar de�nition for �[n]. This \super"-snapshot vec-
tor x[n] can be written as the product of the \channel matrix"

with stacked snapshot vector s[n] = [s(1)[n]T ; : : : ; s(d)[n]T ]T

plus noise
x[n] = Hs[n] + �[n]

The channel matrix H is an MP � d block matrix composed

of L� (2L � 1) blocks H(m)
ip , and can be written as

H =

MX
i=1

PX
p=1

dX
m=1

[(e(M)
i 
 e

(P )
p )e(d)Tm ]
H

(m)
ip

where e(M)
i is the i-th length M standard basis vector (a col-

umn) consisting of all zeros except a one in the i-th position,
(:)T is the vector transpose, and 
 is the kronecker product.

3. LINEAR PARAMETERIZATION OF THE
CHANNEL MATRIX

In the above derivation, we de�ned a matrix function of a
vector TL(h), where h is a length-L channel impulse response
vector. Note that TL(h) is linear. h may be decomposed in
terms of a basis for CL, for example, the standard basis, as

h =
PL�1

n=0 h(n)e
(L)
n+1. Using the linearity of TL, TL(h) =PL�1

n=0 h(n)TL(e
(L)
n+1). From this we see that TL(h) is in the

span of the basis matrices TL(en+1), n = 0; 1; :::;L� 1.
The aim of the next two subsections is to detail and sim-

plify the model by using a di�erent basis, of lower dimension-
ality, for each length L channel vector. This is done by taking
advantage of the knowledge of the Nyquist pulse, time-delay
spread, and oversampling factor.

3.1. Channel Model

In [6] it is shown that, given a maximum time-delay spread
�max, for which

�max
T

� 1
2 , the multipath channel is highly

concentrated in a subspace formed from only 3 uniformly de-
layed Nyquist pulses. This is regardless of the complex gains
of each multipath arrival, assuming on the order of 10 domi-
nant multipath rays at uniformly distributed random arrival

times between 0 and �max. Using this fact, we here assume
that the channel impulse response for the i-th antenna, m-th
user, may be approximated to a high degree of accuracy as

h
(m)
i (t) =

Nh�1X
n=0

h
(m)
ci [n]prc(t� nTs)

with Ts = T=Q, where Q is an integer, and NhTs � �max.
The functions prc(t � nTs), n = 0; 1; :::;Nh � 1 are termed
\basis functions" since the channel between the i-th antenna,
m-th user is in the span of these linearly independent func-
tions.

The length L vector h(m)
ip consists of symbol-spaced sam-

ples of h(m)
i (t), starting at t = p=T ,

h
(m)
ip [k] = h

(m)
i (kT + (p� 1)T=P ); k = 0; :::;L � 1 (1)

This vector can be represented as a matrix-vector product
between a matrix whose columns are the \basis functions"
for this virtual channel, and a smaller vector h(m)

ci

h
(m)
ip = Bfph

(m)
ci

where

h
(m)
ci =

h
h
(m)
ci [0]; h(m)

ci [1]; : : : ; h(m)
ci [Nh � 1]

iT

and Bfp =

2
64

~p(0) ~p(�Ts) � � � ~p(�(Nh � 1)Ts)
~p(T ) ~p(T � Ts) � � � ~p(T � (Nh � 1)Ts)
...

...
...

...
~p((L� 1)T ) ~p((L� 1)T � Ts) � � � :

3
75

Here we use ~p(t) to denote an appropriately delayed version
of the Nyquist pulse, e.g. ~p(t) = prc(t� (p� 1)T=P �LT=2),
so that its peak is approximately in the middle element of
each column.

De�ne the vector h(m)
i , the channel impulse response vec-

tor for the i-th antenna, m-th user, as the stack of all of

its polyphase component vectors h(m)
ip ; p = 1; :::;P : h(m)

i =

[h(m)T
i1 ; : : : ;h

(m)T
iP ]T : This vector may be written as

h
(m)
i =

�
B
T
f1
;BT

f2
; : : : ;BT

fP

�T
h
(m)
ci � Bfh

(m)
ci

The signi�cance of this is that even though the di�erent

polyphase components h(m)
ip ; p = 1; :::;P of the i-th antenna

are in di�erent subspaces de�ned by the Bfp , the coe�cients
in each of these subspaces are the same! To our knowledge
this has not been observed before, so is a new contribution
in this work. It will lead to a slight computational advan-
tage over assuming the di�erent virtual channels of a given
antenna are \uncoupled." However, we have experienced and
present in [3] that taking advantage of the channel coupling
does not signi�cantly improve performance of the channel
identi�cation.

3.2. Simpli�ed Linear Model

We now substitute the lower dimensional form h
(m)
i =

Bfh
(m)
ci into the linear parameterization of the channel ma-

trix, which will be the basis for the development of the al-
gorithms in the following sections. De�ne a stacked Toeplitz
operator, that operates on length LP vectors:

~TL(h
(m)
i ) =

h
TL(h

(m)
i1 )T ; : : : ; TL(h

(m)
iP )T

iT



As with the smaller TL, this operator is linear so that

~TL(h
(m)
i ) = ~TL(Bfh

(m)
ci ) =

Nh�1X
n=0

h
(m)
ci [n] ~TL(bn)

where bn; n = 0; : : : ;Nh � 1, are the columns of Bf .

Thus the channel matrix H(m) of the m-th user can be
written as a linear combination of known matrices, with the
unknown parameters as the weights:

H
(m) =

MX
i=1

Nh�1X
n=0

h
(m)
ci [n]e

(M)
i 
 ~TL(bn): (2)

4. ALGORITHM DEVELOPMENT

Since both the algorithms considered in this paper are based
on second-order statistics, we begin their common develop-
ment with a section describing the asymptotic form of the
covariance matrix and how it is estimated. The subspace
method was chosen for comparison purposes to the new al-
gorithm, since it is well established and well understood.

4.1. Second-Order Statistics

The covariance matrix Rxx[m] of x[n] has the form

Rxx[m] = Efx[n]xH [n�m]g = HRss[m]HH +R��[m]

where (:)H represents conjugate transpose, and Rss[m] and
R��[m] are the covariance matrices of the signal and noise
respectively. Our approach is to estimate Rxx[0] and from it
obtain an estimate of the channel based on its expected form.
Since the information signals are independent and white (as-
suming unit variance without loss of generality), Rss[0] is
identity. Note that if di�erent user's information signals are
received with di�erent power levels, the di�erences will mani-
fest themselves as scalars multiplying the estimated channels.
The covariance matrix Rxx[0] is estimated using N \super"-
snapshot vectors to form the sample covariance matrix:

R̂xx[0] =
1

N

N�1X
n=0

x[n]xH [n] (3)

We assume the channel H does not change signi�cantly over
the interval required to collect N snapshots; this assumption
will dictate the value of N in practical circumstances.
In order to separate the noise and signal subspaces, the

channel matrix H must be \tall," i.e., we require LMP >
(2L�1)d. While a noise subspace is required for the subspace
algorithm, it is not yet clear that this is required for the
new method presented in this paper, since it forms an outer-
product of the coe�cients without any eigen-decomposition
of Rxx[0].

4.2. The New Method

Assume for simplicity that there is a single user, d = 1. Ig-
noring noise, and assuming R̂xx[0] takes its asymptotic form,
we can use (2) to obtain Rxx[0] =

HH
H =

MX
i1=1

MX
i2=1

Nh�1X
n1=0

Nh�1X
n2=0

hci1 [n1]h
�
ci2 [n2]Fi1;i2 (n1; n2)

where

Fi1;i2 (n1; n2) = (e(M)
i1

e
(M)T
i2

)
 ( ~TL(bn1) ~TL(bn2)
H):

Now consider HHH as a block matrix composed of M2

blocks, each block of dimension LP � LP . Note that for
i1; i2 �xed, Fi1;i2 (n1; n2) is mostly zeros with only the i1; i2
block non-zero. The i1; i2 block of HHH is the LP � LP
matrix

�
HH

H
�
i1;i2

=

Nh�1X
n1=0

Nh�1X
n2=0

hci1 [n1]h
�
ci2

[n2]( ~TL(bn1)) ~TL(bn2))
H);

which is a linear combination of known matrices, with the
elements of the outer-product hci1h

H
ci2

as the weights.

Now introduce the vec operator which associates with any
m � n matrix the mn � 1 vector formed by stacking its
columns. For �xed i1; i2, we have

Bovec(hci1h
H
ci2

) = vec
��
HH

H
�
i1 ;i2

�

where Bo is the \outer-product basis matrix," whose columns
are vectorized basis matrices of the blocks of HHH . In par-
ticular, the columns of Bo are

[Bo]k = [Bo]n2Nh+n1 = vec
�
~TL(bn1) ~TL(bn2))

H
�
;

for k = 0; :::;N2
h � 1, each of which is (LP )2 � 1.

The new method solves the system of linear equations

Bovec(ĥci1ĥ
H
ci2

) = vec
��
R̂xx[0]

�
i1;i2

�

for the outer-product of the channel coe�cients, for each of
the M2 blocks. Since the matrix Bo is known in advance
based on the knowledge of the basis functions, its pseudo-
inverse By

o can be precomputed and used to multiply the
vectorized blocks of the covariance matrix estimate R̂xx[0].

Since R̂xx[0] is hermitian, it is su�cient to compute the
outer-product estimates for only its M(M + 1)=2 blocks on
the upper triangle.
Stacking the channel parameters into a vector hc =

[hTc1;h
T
c2; : : : ;h

T
cM ]T , the outer-product hch

H
c is an M �M

block matrix with blocks of size Nh �Nh, with (i1; i2) block
hci1h

H
ci2

. We estimate hch
H
c by plugging in the estimates

of hci1h
H
ci2

for each block 1 � i1; i2 � M . Then we can
�nd hc, up to a unit magnitude complex scalar ambiguity, as
the largest eigenvector of the resulting MNh�MNh matrix.
From the estimated parameter vector ĥc, we can recover the
original channel by using the basis matrix Bf .
When there are multiple users (d > 1), it can be shown

that each user's channel contributes a rank-1 additive term
to the outer-product matrix hch

H
c . In this case, the channels

of the di�erent users are determined, up to a d dimensional
subspace ambiguity, as the d largest eigenvectors.

4.3. Derivation of Subspace Method using the Lin-
ear Parameterization

In this section we present an alternative derivation of an al-
gorithm which is very closely related to that presented in [2].
In the subspace method, the noise eigenvectors of the covari-
ance matrix R̂xx[0] are found. Under certain restrictions, it
can be shown that vHH = 0 for any vector v in the noise
subspace. Let V be a matrix of vectors in the noise subspace.
Using the linear parameterization of H (assuming again that
d = 1 user), we have

V
H
H =

MX
i=1

Nh�1X
n=0

h
(m)
ci [n]VH

h
e
(M)
i 
 ~TL(bn)

i
= 0: (4)



This is a linear combination of matrices with the unknown
parameters as the weights. Using the vec operator, we can
write this as

Bvhc = 0

where Bv has columns that are the vectorized forms of the
matrices in the summation in (4). Speci�cally, the columns
of Bv are

[Bv](i�1)M+n = vec
�
V
H
h
e
(M)
i 
 ~TL(bn)

i�
;

for n = 0; :::;Nh�1 and i = 1; :::;M . If we use all of the noise
eigenvectors, then the noise subspace has dimension LMP �
(2L�1)d, hence Bv is (LMP�(2L�1)d)(2L�1)�MNh. Our
subspace method is to use the smallest right singular vector
of Bv as our parameter vector estimate (up to an unknown
scalar).
When there are multiple users (d > 1), the channels of the

di�erent users are determined, up to a d dimensional subspace
ambiguity, as the d smallest right singular vectors of Bv.

5. MATLAB SIMULATIONS

In our simulations we used QPSK modulation. The receiver
has two antennas (M = 2) and employs two times oversam-
pling (P = 2). The channel is a static �ve-ray multipath with
a raised cosine pulse of excess bandwidth � = 0:1, truncated
to L = 7 symbols. We assume each path arrives at all an-
tennas at the same time. We generated 100 random channels
with the 5 arrival times for each user uniformly distributed
between 0 and 0:4T , where T is the symbol interval. For a
basis set, we started with Nh = 3 and found that the matrix
Bf was very well approximated by its truncated SVD using
only the two largest left and right singular vectors. So our
basis set had Nh = 2, made up of the two largest singular
vectors of Bf .
The SNR is estimated as

SNR = 10log10

PM

m=1
kxmk

2

PM

m=1
knmk2

:

where xm is the noise-free received vector at antenna m and
nm is the noise alone at that antenna. The normalized mean
square error NMSE is given by

NMSE =

Pd

m=1

PM

i=1

PP

p=1 kĥ
(m)
ip � h

(m)
ip k2Pd

m=1

PM

i=1

PP

p=1
kh(m)

ip k2

In the single user case d = 1, we estimate the aforementioned
scalar ambiguity by doing a least squares �t of the estimated
channel to the actual channel. Similarly, with multiple users
d > 1, we express the estimated channel for each user as
an unknown linear combination of the actual channels of the
di�erent users, and estimate the d2 unknown scalars via least
squares. Using this approach the NMSE is a measure of how
well the actual channel and the estimated channel span the
same d-dimensional space.
We vary both the SNR and the number of symbols used

in forming the covariance matrices, and plot the average
NMSE for d = 1 and d = 2 users (Figure 1). 100 trials were
performed for each of the 100 channels. We note that each
of the curves for the new method starts out better than for
the modi�ed subspace method at low SNR, but crosses over
and performs worse (on average) at high SNR. This suggests
this method can yield improved channel estimates in a noisy
environment, while requiring less computation. The original
subspace method performs far worse than either of the meth-
ods developed in this paper; see [3] for detailed results. Note
the modi�ed subspace method took less computation for 2
users due to the much smaller number of noise eigenvectors
(2 vs. 15).
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Figure 1. Average performance vs. SNR, 100 ran-
domly generated channels, 100 trials each channel.

6. CONCLUSION

We have presented a computationally attractive blind chan-
nel estimation procedure that performs better on aver-
age than the subspace algorithm at low SNR. The eigen-
decomposition of the covariance matrix is the most demand-
ing computational step in the subspace methods, and is
avoided by the new method (see [3] for a detailed compu-
tational comparison). This method takes advantage of the
knowledge of the Nyquist pulse and the structure of the chan-
nel matrix.

REFERENCES

[1] K. Abed-Meraim, P. Loubaton, \A Subspace Algorithm
for Certain Blind Identi�cation Problems," IEEE Trans.
on Information Theory, Vol. 43, No. 2, pps. 499-511,
March 1997.

[2] Zhi Ding, \Multipath Channel Identi�cation Based on
Partial System Information," IEEE Trans. on Signal
Processing, Vol. 45, pps. 235-240, January 1997.

[3] T. P. Krauss and M. D. Zoltowski, \Multiuser Second-
Order Statistics Based Blind Identi�cation Using a Lin-
ear Parameterization of the Channel Matrix," submitted
to IEEE Trans. on Signal Processing.

[4] E. Moulines, P. Duhamel, J. Cardoso and S. Mayrargue,
\Subspace Methods for the Blind Identi�cation of Multi-
channel FIR Filters," IEEE Trans. on Signal Processing,
Vol. 43, pps. 516-525, February 1995.

[5] A. J. van der Veen, S. Talwar, and A. Paulraj, \A Sub-
space Approach to Blind Space-Time Signal Processing
for Wireless Communication Systems," IEEE Trans. on
Signal Processing, Vol. 45, pps. 173-190, January 1997.

[6] M. D. Zoltowski, D. Tseng, and T. Thomas, \On The
Use of Basis Functions in Blind Equalization Based on
Deterministic Least Squares," Proc. Asilomar Conf. on
Signals, Systems, & Computers, pp. 816-822, Nov. 1997.


