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ABSTRACT
This paper concernsrapid adaptation of hidden Markov model
(HMM) based speech recognizers to a new speaker, when only
few speech samples (one minute or less) are available from the
new speaker. A widely used family of adaptation algorithms de-
fines adaptation as a linearly constrained reestimation of theHMM
Gaussians. With few speech data, tight constraints must be intro-
duced, by reducing the number of linear transforms and by spec-
ifying certain transform structures (e.g. block diagonal). We hy-
pothesize that under these adaptation conditions, the residual er-
rors of the adapted Gaussian parameters can be represented and
corrected by dependency models, as estimated from a training cor-
pus. Thus, after introducing a particular class of linear transforms,
we develop correlation models of the transform parameters. In
rapid adaptation experiments on theSWITCHBOARDcorpus, the
proposed algorithm performs better than the transform-constrained
adaptation and the adaptation by correlation modeling of theHMM
parameters, respectively.

1. INTRODUCTION

Adaptation techniques have been developed for automatic speech
recognizers to compensate for differences between the speech on
which the system was trained, and the speech which it has to rec-
ognize. However, before obtaining significant improvement in
recognition performance, several minutes of speech from the new
speakeror environmentmust be provided.Rapidadaptation, where
the recognizer has to adapt on one minute or less of speech data,
is not as effective. On the contrary, humans can quickly adapt to
the characteristics of speech distorted by an unknown channel, or
pronounced by a nonnative speaker. Humans seem to exploit re-
lationships between various speech sounds, so that, having heard
only few speech samples in a new distorted environment, they ad-
just to all the speech pronounced in this environment. Therefore, in
the speaker adaptation project of the 1998 workshop organized by
the CLSP center at Johns Hopkins University, many participants
decided to improve rapid speech recognizer adaptation by model-
ing the dependencies between speech sounds (see [1] for project
summary). In particular, this paper provides specific details about
one of the adaptation approaches based on dependency modeling,
developed at the workshop.

Dependency models for the speaker adaptation problem have
been long introduced [2, 3] and further studied by several other
authors [4, 5, 6, 7, 8, 9]. However, the most widely used hidden
Markov model (HMM) adaptation algorithms, reviewed in Section
2, take a different approach. Adaptation is implemented as rees-
timation of theHMM under certain constraints, defined by linear
transforms of theHMM parameters. With few adaptation data,

tight constraints must be introduced bytying linear transforms in a
small number of classes and by specifying certain transform struc-
tures (e.g. block diagonal). Our hypothesis is that, under these
adaptation conditions, the residual errors of the adaptedHMM pa-
rameters can be represented and corrected by correlation models,
as estimated from a large training corpus. In this study, to take ad-
vantage of the correlation between the transform parameters, we
introduce a particular class (cascade) of linear transforms (Section
3). We use correlation models to predict the values of transform
parameters that cannot be estimated from the adaptation data, and
to improve the parameter estimates by smoothing (Section 4). Fi-
nally, speakeradaptation experiments on theSWITCHBOARDcor-
pus are detailed in Section 5, and conclusions drawn in Section 6.

2. MLLR ADAPTATION

A family of adaptation algorithms [10, 11, 12] for continuous den-
sity HMM is based on constrained reestimation of the mixture
Gaussians. Maximum likelihood (ML) reestimation of the Gaus-
sians is based on the expectation-maximization (EM) algorithm
[13]. Let the observation densities of the speaker independent (SI)
HMM be Gaussian mixtures:

PSI(xtjst) =

N!X
i=1

p(!ijst)N(xt;�st;i
;�sti); (1)

wherext is the observed feature vector at timet, st is theHMM
state,!i denotes the event that thei-th Gaussian mixture of state
st was used at timet, andN! is the number of component Gaus-
sians in the mixture density.N(xt;�st;i

;�sti) is the multivariate
normal density with mean�st;i

and covariance�sti.
In theMLLRalgorithm [11], the linear constraint is applied to

the means of the adapted observation densities. The adapted state
Gaussian mixture becomes:

PSA(xtjst) =

N!X
i=1

p(!ijst)N(xt;Ag�st;i
+ bg;�sti): (2)

The transformations are shared among states according to simi-
larity of states, as specified by the indexg = 
(st). To reduce
the number of parameters that must be estimated, astructured
transform is often used [14], by transforming independently the
cepstrum and the cepstrum derivative components with a block-
diagonal matrix. A simpler constraint is thebias transform, that
implements adaptation as an additive Gaussian mean bias:

PSA(xtjst) =

N!X
i=1

p(!ijst)N(xt;�st;i
+ bg;�sti): (3)

(3) is not as powerful as the affine transformation in (2). However,
it is easier to model dependencies of simple biases.



3. CASCADE MLLR TRANSFORMS

To retain the modeling capability of the affine transform, and to
model dependencies between transforms of different speech units,
we have definedcascadetransforms, by tying less aggressively the
transform components with fewer parameters:

PSA(xtjst) =

N!X
i=1

p(!ijst)N(xt;Ag�st;i
+ bg0 ;�sti): (4)

The clustersg0, used in (4) for tying biasesbg0 , are a refinement
of g. The termcascaderefers to the adopted estimation algorithm
of bg0 . First, theMLLR transforms (2) are estimated. Then, an
additionalEM step on clusterg0 refines the bias estimate, yielding
bg0 .

Whenbg0 cannot be estimated (unseen adaptation data), the
less refinedbg provides abackoffestimate.

4. CORRELATION METHODS FOR THE CASCADE
TRANSFORM

With few adaptation data available, many of the biasesbg0 (4)
cannot be estimated (unseen data), or the estimates (seen data) may
be unreliable. Rather than backing-off, we use correlation models
to predict the unseen biases and to smooth the seen biases.

4.1. Explicit Correlation Model

We assume that the statistics of corresponding component pairs in
different cascadebias vectors (4) are bivariate Gaussians. These
are estimated prior to adaptation, from a large corpus of train-
ing data, collected by many speakers (different from the adapta-
tion subjects). In adaptation, we predict the components ofbk0

from the components of seen biasbj0 through linear regression:
b̂k0=j0 = �k0;j0 b

0

j + �k0;j0 . All the predictorŝbk0=j0 , such that
the correlation�k0;j0 exceeds a threshold, are interpolated accord-
ing to maximum likelihood:

^̂
bk0 =

X
j0

wj0 b̂k0=j0 ; wj0 /
1:0

�b̂k0=bj0
2

(5)

where

�b̂k0=bj0

2 = �b
k0

2(1� �
2

bk0 ;bj0
) + �k0;j0

2
�
2

�
b0
j

(6)

is the variance of estimatorb̂k0=j0 , and�2�
b0
j

is the variance of the

predictor source estimate [4].
We use (5) to predict unseen biasbk0 , eventually after smooth-

ing with the backoff valuebk of bk0 :
^̂
b̂k0 = W

^̂
bk0 + (1�W ) bk (7)

and to smooth the estimatesbk0 (seen data):
^̂̂
bk0 = S bk0 + (1� S)

^̂
bk0 (8)

4.2. Markov Random Fields

Markov random fields (MRFs) were first used in modeling depen-
dencies of the Gaussian means in [6]. We useMRFs to model
dependencies between the biases of thecascadeand simple bias
transformations. Despite the elegant theory behindMRFs, their
application to correlation modeling for adaptation gives an imple-
mentation that is very similar to the explicit correlation technique.

The main difference is that smoothing of seen biases and predic-
tion of unseen biases is done jointly in an iterative fashion, where
the current estimates of the biases are used to obtain new estimates
for both the seen and unseen classes.

In our implementation, the new estimate for the bias element
of a class is given by

b
new
s =

ws;sb
old
s +

X
r2Ns

ws;r(�s;rb
old
r + �s;r)

ws;s +
X
r2Ns

ws;r

(9)

where the prediction neighbors (the setNs) for a particular points
are these elementsr of class biases that are mostly correlated to it.
The coefficients�s;r; �s;r are obtained through linear regression,
whereas the combination weights are based on the variance of the
MAP estimates,

ws;r =

8<
:

Ns + �
� ; s = r

1

1� �
2

bs;br (1�
�

Nr + �
)
; s 6= r (10)

whereNs is the number of observations that were used to estimate
the biass and�; � are constants determined empirically.

5. RESULTS ON THE SWITCHBOARD CORPUS

5.1. Task Definition

We used theSWITCHBOARDspeech corpus to test the adaptation
methods. Unsupervisedtranscription-modeadaptation has been
previously applied to this task, by adapting the recognizer to the
same data that is being recognized (details in [1, 15]). We eval-
uatedrapid adaptation on two batch-mode benchmarks, with 30
and 60 seconds of speech, respectively. The benchmarks were de-
fined on the 1997 summer-workshop development set by equally
splitting the speech of each conversation side into two parts, adapt-
ing on the first 30 or 60 seconds of each part, and testing on the
other half. The complete definition of the task can be found on
the 1998 Workshop web site [15]. The speaker and gender inde-
pendentHMM was trained with 60 hours of speech data, which
were also used for dependency model estimation. We used per-
utterance cepstral-mean normalization, and we tested adaptation
performance by rescoring lattices with a 22,000 bigram language
model.

5.2. Baseline And Cascade MLLR

The speaker-independent word error rate on the development set
was 45.3%. The baselineMLLR adaptation (2) was tested with
various numbers of transforms and transform structures. The trans-
form classes were chosen according to acoustic phonetic knowl-
edge. The system with four block diagonal transforms gave the
best results (Table 1), both with 30 and 60 seconds of adaptation
data.

We optimized the cascade adaptation (4) by experiments with
different number of matricesAg and biasesbg0 . The best results
were obtained with one matrix and either 11 or 21 biases, depend-
ing on the amount of adaptation data. Table 2 also shows the re-
sults with 150cascadebiases (one for every monophone state),



Adapt Transform. Adapt. Number of Word
Mode Type Data Transforms Error

SI - - - 45.3%
Full 1 43.1%
Full 30” 4 44.5%

Block 1 42.9%
Block 4 42.6%

Unsup. Block 11 42.8%
Full 1 42.7%
Full 60” 4 42.1%

Block 1 42.8%
Block 4 42.1%
Block 11 42.2%

Table 1: Speaker-independent andMLLRadaptation results.

Adapt. Transform Adapt. Number of Word
Mode Type Data Transf./Biases Error

Block 4/4 42.6%
Cascade 30” 1/11 42.6%

Unsup. Cascade 1/150 43.2%
Block 4/4 42.1%

Cascade 60” 1/21 42.0%
Cascade 1/150 42.2%
Block 4/4 41.6%

Cascade 30” 1/11 41.4%
Sup. Cascade 1/150 41.7%

Block 4/4 40.8%
Cascade 60” 1/21 40.8%
Cascade 60” 1/150 40.2%

Table 2: Adaptation results for block-diagonal and cascade trans-
formations.

and with the best baseline block MLLR system. The cascade-
transformation outperformed slightly the standard block-diagonal
MLLR.

5.3. Correlation Models For Cascade Biases

As shown in Table 2, thecascadesystems with 11 and 21 biases
are the most accurate. However, they typically give small corre-
lation estimates between components of different bias vectors, be-
cause the biases are much smoothed by tying into relatively small
number of classes. The correlations are much stronger for thecas-
cadesystem with 150 biases. Therefore we have applied the corre-
lation modeling of Section 4.1 to the 150 bias system, even if this
is not the best of Table 2. In thecascadeadaptation, the refined
biasesbg0 (4) are estimated if the number of adaptation samples
is greater than a given threshold (20 gave the best result). On av-
erage, only 49 and 78 of the 150 biases are estimated from 30 and
60 seconds of adaptation data, respectively.

We predict the unseen biases as per equation (7), with the max-
imum likelihood weightswj0 (5). We have experimented also with
predictors based only on the most correlated source and with equal
weight predictors. The maximum likelihood weights give the best

Adapt. Adapt. Predictor weights W of (7)
Mode Data 0.5 1.0

a: most correlated only 42.9% 43.1%
Unsup. 30” b: equal weights 42.7% 42.8%

c: max. likelihood 42.7% 42.7%

Table 3: Word error rates (%) for prediction of unseencascade
biases by explicit correlation model.

Adapt. Adapt. WeightS in (8)
Mode Data 0.8 0.7 0.6 0.5 0.4

Unsup 30” 42.5% 42.3% 42.3% 42.4% 42.5%
60” 41.8% 41.8% 41.8% 41.9% 42.1%

Sup. 30” 41.5% 41.4% 41.4% 41.3% 41.3%
60” 40.0% 39.9% 40.0% 40.1% 40.4%

Table 4: Word error rates (%) for prediction and smoothing of
cascadebiases by explicit correlation model.

results (see Table 3), especially if the predictor is not smoothed
with the backoff bias (W = 1:0).

As shown in Table 4, smoothing the estimated (seen) biases
with the prediction model (8) gives further improvements. We
asses the overall improvements of the correlation model of thecas-
cade MLLRbiases, by comparing Table 4 with the baseline system
(4 block diagonal transforms) in Table 2. On the different adapta-
tion tasks, word error rate improvements range from 0.3% to 0.9%.

5.4. Correlation Models For Gaussian Mean Biases

We now verify that correlation modeling of thecascadebiases (4),
evaluated in Section 5.3, is more effective than correlation mod-
eling of the Gaussian mean biases (3). At the workshop, we have
applied the correlation models of Section 4 to the Gaussian mean
biases (3).MRFs with correlation smoothing gave the best results,
shown in Table 5 (details in [15]).

The comparison of Tables 5 and 4, demonstrates that correla-
tion modeling of thecascadebiases is more effective than correla-
tion modeling of the Gaussian mean biases.

Adapt. Adapt. Number of Word
Mode Data Biases (3) Error

30” 150 43.6%
Unsupervised 250 43.7%

60” 150 43.7%
250 43.3%

Table 5: Word error rates (%) forMRF model of Gaussian mean
biases (3).



6. CONCLUSIONS

In essence, the proposed algorithm forrapid recognizer adaptation
to new speakers is effective because thecascadetransform (4)

a) retains the modeling power of the matrixAg, as in linearly
constrained reestimation, and,

b) by relaxing the tying of the biasesbg0 , it retains sufficient
detail in the adaptation of the different speech sounds to
allow for effective dependency modeling. See comments in
Section 5.3 for details.

The proposed approach combines theMLLRand correlation based
adaptation. Inrapidadaptation experiments on theSWITCHBOARD
corpus, the novel approach is more effective than eitherMLLR or
correlation modeling used alone.

In addition, we feel that our current implementation of the ex-
plicit correlation model can be improved further. The prediction
(5) is limited to corresponding components across different biases.
For example thefirst cepstrum coefficient of a bias is predicted
only from thefirst cepstra of other biases. This limitation should
be removed, in particular because it hinders the prediction of the
1st and2nd differential cepstra, that are often strongly correlated
to the cepstra. We should evaluate also theMRF approach to cor-
relation modeling ofcascadebiases (4), besides the explicit corre-
lation model reported in this paper.
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