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ABSTRACT

Conversational speech recognition is a challenging
problem primarily because speakers rarely fully
articulate sounds. A successful speech recognition
approach must infer intended spectral targets from the
speech data, or develop a method of dealing with large
variances in the data. Hidden Dynamic Models
(HDMs) attempt to automatically learn such targets in
a hidden feature space using models that integrate
linguistic information with constrained temporal
trajectory models. HDMs are a radical departure from
conventional hidden Markov models (HMMs), which
simply account for variation in the observed data. In
this paper, we present an initial evaluation of such
models on a conversational speech recognition task
involving a subset of the SWITCHBOARD corpus.
We show that in an N-Best rescoring paradigm, HDMs
are capable of delivering performance competitive
with HMMs.

1. INTRODUCTION

Hidden dynamic models [1,2] (HDMs) attempt to
produce acoustic likelihoods of phone-level sound
units that reflect intended spectral configurations
rather than likelihoods based on the actual realization
of the sound in the speech data. This is a radical
departure from current statistical modeling approaches
that attempt to account for variation in the data by
accumulating large numbers of Gaussian mixture
components. It is conjectured that this approach will

produce more consistent acoustic scoring fo
conversational speech, because sounds are rarely f
articulated in such data. Tremendous amounts
variation are observed in the speech data because
the manner in which the realization of a sound wa
truncated is highly context-dependent. It is the goal
this work to produce acoustic scores that refle
measurements in the hidden (or target) space, rat
than directly in the feature space as is currently do
in context-dependent phonetic modeling.

The work presented here was the culmination of a
intense effort at the 1998 NSF Workshop on Langua
Engineering held at the Center for Language an
Speech Processing at Johns Hopkins University. O
goal of this work, which is the primary focus of this
paper, was to evaluate the HDM approach on
credible conversational speech recognition ta
involving the SWITCHBOARD (SWB) Corpus [3].

2. HIDDEN DYNAMIC MODELS

The models presented here consist of two separ
components which accommodate separate source
speech variabilities. The first component is a smoo
dynamic one, l inear but nonstat ionary. Th
nonstationarity is described by a sequence of segme
each corresponding to a phonological unit (phone
The second component is static and non-linear. Th
component handles other types of variabilities (lowe
level). The two components combined form
nonstationary, non-linear dynamic system whos
structure and properties are well understood in term
of the general process of human speech producti
An overview of this approach is given in Figure 1.

2.1. Deterministic Hidden Dynamic Models (DHDMs)

The dynamic system in the DHMD approach [4] i
basically a low-pass filter operating on components

1. This material is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. (#IIS-9732388), and was
carried out at the 1998 Workshop on Language Engineering, Center
for Language and Speech Processing, Johns Hopkins University.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not neces-
sarily reflect the views of NSF or The Johns Hopkins University.
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the target values, with time-constants as specified by
the current segment. Each phone type specifies a
vector of target values and a vector of time-constants.
The variable low-pass filter is symmetrical so that the
center of transitions occurs at phone boundaries, to
agree with normal phonetic marking practice.

The output non-linearity is a single MLP, and the
criterion for model training (and for recognition) is
weighted mean-square error in the smoothed log
power spectrum. (This is proportional to a log-
likelihood, assuming a generative stochastic model
with a simple Gaussian distribution at the acoustic
level.) The weights of the MLP are optimized at the
same time as the targets and time-constants, using a
form of gradient descent. The derivatives with respect
to the acoustic error are back-propagated through the
MLP and through the filter to the target values and the
time-constants.

2.2. Statistical Hidden Dynamic Models (VTRs)

In this approach, we use a statistical nonlinear
dynamic system model [2] to describe vocal tract
resonances (VTRs) dynamics. The VTRs are pole
locations of the VT configured to produce speech
sounds, and have acoustic correlates of formants
which are directly measurable for vowel/glide sounds,
but often are hidden or perturbed for consonantal
sounds due to the concurrent spectral zeros and
turbulence noises. A noisy, causal and linear dynamic
system is used to describe the VTR dynamics. The
output nonlinearity is multiple, switching MLPs, with
each MLP associated with distinct manner of
articulation of a phone. The criterion for model
training (and for recognition) is maximum likelihood

on MFCCs only (not on VTRs).

2.3. Significant Contrasts

The VTR and DHMD approaches, though similar i
many aspects, differ significantly in a few key area
First, the VTR system uses formant-like resonances
i ts in terna l model , wh i le the HDM uses an
uncons t ra ined h idden s ta te . Second , e r r
computations for the VTR model are based on intern
model “strain,” while the DHDM uses a deterministic
model with a single Gaussian output model. Third, th
VTR system uses a goal-based speech product
theory and a causal second-order low-pass filter
constrain its dynamics, while the DHDM system use
a zero-phase second-order low-pass filter. Finally, t
VTR system uses a generalized EM with an extend
Kalman fi l ter while the DHDM uses a single
conjugate gradient descent algorithm. Though the
systems differ in their implementations, the overa
philosophies are quite similar, and hence, they can
evaluated in a common framework as presented belo

3. N-BEST RESCORING EXPERIMENTS

An overview of our evaluation paradigm is shown i
Figure 2. HDM systems ultimately can be viewed a
performing an enhanced likelihood computation in th
acoustic space. By replacing the standard likeliho
computation by a new one from the HDM system, w
can easily insert this system into a conventional N-be
rescoring paradigm. The essential inputs to the HD
system are an N-best list with phone-level tim
alignments, and the corresponding speech data. T
HDM systems rescore the sequence of phones in t
time alignment, and produce an overall senten
Figure 1: An overview of the hidden dynamic model (HDM) approach. Acoustic likelihood computations are performed in a
hidden space that is inferred from standard recognition features (such as mel-frequency cepstra coefficients).
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likelihood. Note that in this study the HDM systems d
not realign the transcription.

There are some practical reasons why we chose t
limited rescoring methodology. First, integration of th
HDM rescoring module into a lattice rescoring
paradigm is difficult (and this is the only thing that is
practical for SWB evaluations). Computationa
requirements prohibited large-scale rescorin
experiments. Second, we ignored language mod
(LM) scores in order to focus on acoustic modelin
issues. Integration of LM scores is a research topic
itself. Rather than deal with this complex issues in th
study, we chose to focus solely on improvements
acoustic scoring. Any improvements due to LM
effects, should however be equally applicable to HD
systems. Finally, no conventional speaker adaptat
or normalization algorithms were used. Instead, f
some experiments, a simple frequency warpin
method of speaker normalization was used that w
anticipated to be sufficient for speakers of the sam
sex. Effective speaker normalization is important to th
HDM model, but not something extensively explore
in this study.

A plausible solution to these constraints was to sele
the male speaker subset [6] from the WS’97 DevTe
and to reserve 10 utterances from each test speake
adaptation. This resulted in 1241 utterances consist
o f 23 speakers , 24 conversa t ion s ides , an
approximately 50 minutes of speech. We used
baseline context-dependent phone HMM system [6]
generate N-best lists and time alignments for th
reference transcription and the 100-best hypothes
The HDM systems rescored these hypotheses, and
o
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resulting sentence hypotheses were scored us
standard NIST scoring software and presented
terms of word error rate (WER). In Figure 3, we
demonstrate that the 100-best lists used in this stu
are sufficiently rich, in that the overall WER can b
reduced from 52% to 32% if the best sentenc
hypothesis is always selected.

We evaluated the HDM systems under thre
conditions: ref+5 — selecting from the referenc
transcription and the top 5 most likely hypothese
5-best — selecting from only the top 5 hypothese
(performance is expected to be worse), and 100-be
The latter condition is very close to a realisti
rescoring experiment. Note that the HMM systems a
handicapped in these evaluations since the hypothe
being rescored are highly confusable for the HMM
systems, but not necessarily for the HDM system
WORD ERROR RATE
Figure 2: An overview of the N-best rescoring paradigm used to evaluate the HDMs on conversational speech. A conventional
context-dependent HMM system was used to generate N-best lists, and the HDM systems rescored these lists.
es.
theFigure 3: A demonstration of the richness of the N-best

lists used in our rescoring experiments.
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1241 Male Speaker SWB Subset

System Ref+5 5-Best
100-
Best

Bounds:
Oracle

Chance:
0.0

45.0
42.7
54.0

32.5
60.2

HMM:
Baseline
Syllable

Small

48.2
40.1
44.8

52.0
50.9
52.6

56.9
54.6
58.9

DHDM:
6 dims., 40 hidden units

standard, no warping
32.7
34.7

52.6
53.0

59.4
n/a

VTR:
warping:

low variance
mid variance

high variance
no warping:

low variance
mid variance

high variance

32.4
32.2
33.1

37.3
32.3
32.2

54.4
54.5
54.8

54.1
54.3
54.6

60.7
59.7
61.2

60.3
60.9
61.0

Table 1: A analysis of word error rate (WER) for an N-best
rescoring task involving 1241 male speakers from
DevTest’97. The HDMs, when exposed to the reference
transcription, outperform comparable HMMs and chance.
The results of these evaluations are presented
Table 1.

The first two lines in Table 1 represent bounds o
performance: Oracle refers to always choosing t
transcription with the lowest WER; Chance refers
randomly choosing from amongst the alternatives. W
see that the HDM systems perform comparable
chance on the 100-best evaluation, and perfo
significantly better than chance when exposed to t
reference transcription. The VTR and HDM system
are fairly close in performance, and slightly inferior t
the HMM systems when not exposed to the referen
transcription.

We have also included in these evaluations an HM
system significantly different than the one used
generate the baseline results to increase the credib
of these results. Further, an HMM system, labele
“Small” in Table 1. This system was trained on exact
the same material as the HDMs — a small subset
the SWB training database consisting of one spea
for whom there was the most amount of data.
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4. SUMMARY

We believe the HDM systems presented in this pap
demonstrate superior performance when exposed
the reference transcription. This demonstrates t
promise of the HDM approach, and underscores t
importance of time realignment of the N-bes
hypotheses for the HDM system. Further research
this direction is planned as follow-on work to WS’98

We are grateful to Dr. George R. Doddington for hi
valuable insights into the evaluation paradigm, an
Professor Mari Ostendorf for her useful suggestio
on improving the performance of the VTR model.
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