
HIDDEN MARKOV MODELS WITH DIVERGENCE
BASED VECTOR QUANTIZED VARIANCES

Jae Kim*, Raziel Haimi-Cohen*, and Frank Soong**

*Philips Consumer Communications **Lucent Technologies
     330 S. Randolphiville Rd. 600 Mountain Ave.

            Piscataway, NJ 08854 Murray Hill, NJ 07974 USA

ABSTRACT
This paper describes a method to significantly reduce the
complexity of continuous density HMM with only a small
degradation in performance. The proposed method is noise-
robust and may perform even better than the standard algorithm
if training and testing noise conditions are not matched. The
method is based on approximating the variance vectors of the
Gaussian kernels by a vector quantization (VQ) codebook of a
small size.  The quantization of the variance vectors is done
using an information theoretic  distortion measure. Closed form
expressions are given for the computation of the VQ codebook
and the superiority of the proposed distortion measure over the
Euclidean distance is demonstrated. The effectiveness of the
proposed method is shown using the connected TI digits database
and a noisy version of it.  For the connected TI digit database, the
proposed method shows that by quantizing the variance to 16
levels we can maintain recognition performance within 1%
degradation of the original VR system.  In comparison, with
Euclidean distortion, a size 256 codebook is needed for a similar
error rate.

1. INTRODUCTION
The accuracy of hidden Markov models (HMM) based speech
recognizer depends largely on the effectiveness of the
representation of the observation likelihoods in the model.
Continuous Density HMM [1] has shown to be very successful in
this respect: The probability density function (PDF) of the
observations is modeled by a mixture of Gaussian kernels which
can closely approximate the features distribution. Also, Laplacian
and other kernels have also been used successfully for this
purpose[2].  In this paper we consider only Gaussian kernels;
however, the method can be extended to Laplacian kernels as
well.  The flexibility of Gaussian mixtures comes at a price:
Evaluating a large number of Gaussian kernels is
computationally expensive; also, the kernel parameters require a
large storage space and, since all these parameters need to be
access by the processor every frame, fast access memory devices
are required.  In comparison, in a discrete HMM [3], the discrete
probability can be retrieved from a table look-up and no
computation is needed.  Several attempts have been made to
alleviate the problems of a continuous HMM.  One approach was
to organize the kernels in clusters and evaluate the likelihoods
only for those clusters which are not too “far” from the given
feature vector [4].  This method significantly reduced

computations and memory access, but did not influence memory
size. A widely known approach which aims at reducing the
number of kernels is the semi-continuous HMM [5] which makes
a more efficient use of  a limited number of kernels by sharing
them among all state mixtures. However, in order to maintain a
high spectral resolution, semi-continuous HMM needs to use
larger number of mixture densities, which require more storage
for mixture weights and much more computations and memory
access to obtain the mixtures likelihoods [6]. Recently, an
alternative approach was proposed which applied vector
quantization to the means and variances of the kernels in order to
reduce storage and computation [7]. As it turned out, in order to
get an acceptably small quantization error, the kernels parameters
vector had to be split into sub-vector and each sub-vector was
quantized separately. As a result even though the number of
arithmetic operations has been reduced, the computation requires
a large number of table look-up operations which may be quite
costly, particularly if the recognition is performed on a digital
signal processor (DSP) which is not optimized for this type of
calculations.

It is also known that the Gaussian kernels are very sensitive to
any perturbation in the value of their means. On the other hand,
the values of the variances seem to have a much lesser impact on
performance. In fact it has been shown that even with one
“grand” variance vector for all kernels yields a moderate
degradation in recognition accuracy when the training and testing
conditions are matched and  improves performance under non-
matched conditions [8]. The grand variance method is equivalent
to vector quantizing the variance vectors of the Gaussian kernels
using a codebook of size one. It therefore seems plausible that if
a codebook of higher order is used, the degradation effect will
diminish.

This paper describes a method of applying vector-quantization to
the variances of the kernels of continuous density HMMs.  Sec. 2
describes the quantization algorithm, which uses a non-Euclidean
error metric in order to account for the non-linear effect that the
variances have on the Gaussian kernel likelihood. Sec 3 shows
the computational gain achieved by using quantized variances.
Sec. 4 gives some performance results using the method and
Sec. 5 provides some conclusions.

2. DIVERGENCE BASED VQ
In variance quantization we create a small codebook of variance
centroid vectors and replace the variance vector in each Gaussian



kernel by a centroid vector from the codebook. Our goal is to
minimize the resulting distortion in the PDFs of the mixtures. We
use the divergence probabilistic distance as measure for this
distortion [9]:
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where f ( )x  and $( )f x are the PDFs of the original and the
quantized mixtures, respectively. The divergence distance
measure was selected because it measures the distance between
log-likelihoods, and the cumulative HMM Viterbi score is the
sum of the log likelihoods over the optimal path. However, if
f ( )x is a mixture of more than one kernel, then the integral in

Eq. (1) becomes intractable and one cannot get a closed form
solution for the distortion minimization problem. Therefore,
instead of minimizing the distortion of the mixtures, we will
minimize the distortion of their component Gaussians, again with
respect to the divergence distortion measure.

It can be easily shown that if f ( )x  and $( )f x are Gaussians with
the same mean vectors and diagonal variance vectors

( )diag , ,1σ σK M  and ( )diag $ , , $1σ σK M  respectively, then the

divergence between the two Gaussians is given by [9]:
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since the right hand side depends only on the variance vectors,
we may consider it as a distance measure between two M-
dimensional variance vectors, σ σ and $ :
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Given a set of N Gaussians and a corresponding set of variance

vectors { }A k K
k

= =σ | ,...,1  , we compute a codebook
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computations are done iteratively  using the Linde-Buzo-Gray
(LBG) algorithm [10]. Each iteration consists of two steps:

Step 1: For each Gaussian j Aσ ∈ , select the nearest centroid
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be the cluster of all variance vector indices assigned to the k-th
centroid. For each cluster k let the total distortion be:

( ) ( )k k j kj k
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We compute a new centroid 
k

~σ  which minimizes ( )k kJ ~σ  by

equating  the gradient of the right hand side of Eq. (6) to 0. With
some manipulations one can get a closed form formula for k

~σ  :
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After the new centroids are computed, they are copied into the
old ones and we go back to step one. This iterative process is
guaranteed to converge to a local minimum of the overall
distortion.

3. COMPUTATIONAL GAINS
It is obvious that quantizing the variance vectors will reduce the
required storage. The following shows how the quantization may
be used to reduce computations. Let N x( ; , )µ C be a Gaussian

kernel with a mean vector µ and a covariance matrix

C = diag( ,..., )1σ σ M  and let D C= −1 2/ .Then the log likelihood

of this kernel for a given feature vector x is given by:

( ) ( )log ( ; , )N x G x x

G x

T

µ µ µ

µ

C C

D D

= + − − =

+

−

−

1

2
(8)

Where G is a constant. Dµ  is independent of x  hence it may be

pre-computed and stored. Dx  is a vector multiply operation

which needs to be computed once for each variance vector.
Therefore, reducing the number of variance vectors will
correspondingly reduce the number of vector multiplies required.

4. EXPERIMENT RESULTS
The variance quantization method was tested on two databases:
The Texas Instruments database of American English digit
strings (TIDIGITS) and a noisy version of that database, which
was obtained by adding car noise at various SNR-s to TIDIGITS
[11]. The feature vector in all experiments included 25 features:
12 cepstrum coefficients, 12 delta-cepstrum coefficients and the
delta-energy coefficient. Continuous density HMM models were
generated from the training part of both clean and the noisy
databases. All 11 word models had 8 states with 8 mixtures and
the silence model has 1 state with 5 mixtures.  Altogether, there
are 709 Gaussian kernels for the 12 models. The variances of the
models were quantized in the method described in sec. 2 (except
where otherwise specified). Recognition experiments were
conducted with an unknown string length assumption (except
where otherwise indicated).

4.1 Divergence vs. Euclidean Distortion
The performance variance quantization based on the divergence
distance was compared to the performance of variance
quantization using Euclidean distance between variance vectors.



Models were trained on clean TIDIGTS and testing was also on
clean TIDIGITS. The results are shown in Fig. 1 as a function of
the codebook size. The total number of connected string used in
this experiment is 8,700 utterances (28,583 digits), average digit
length per string is 3.29 and the baseline accuracy (without
quantization) was 95.6%.
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Figure 1: Comparison of two quantization methods

The performance of divergence based variance quantization
(VQD) system is better than that of the Euclidean distance based
variance quantization (VQE) system for all codebook sizes
except codebook size 1 where VQE is negligibly better.  In both
methods the accuracy increases with the size of the codebook.
However, with VQE the performance improves very quickly and
very little is gained beyond a codebook size of 8 or 16. On the
other hand, in VQD, the improvement is rather slow and we need
to go to a codebook of size 256 in order to get performance
similar to that of VQE at codebook size 16.
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Figure 2: Quantization error  vs.  codebook size

4.2 Quantization Error and Accuracy
The divergence quantization error (the average distortion of
variance vectors) with respect to codebook size has been plotted
in Figure 2.  As we expected, its value decreases as the codebook

size increases.  Comparing fig. 1 to fig. 2 we can see that an
improvement in performance as the codebook size is increased
by one step is highly correlated with a corresponding reduction
of quantization error.

4.3 Performance vs. Digit String Length
Figure 3 represents the performance with respect to string length
on the clean training/clean testing of the TIDIGTS.  The
performance of codebook sizes of 1, 8, and 256 are compared
with that of the unquantized system.  As we can see the
performance of codebook sizes 8 and 256 is much better than
that of a single variance and quite close to the unquantized
performance.
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Figure 3: Performance of variance quantization w.r.t
string size on the clean/clean connected TIDIGITS

4.4 Performance on Noisy Testing Data
We ran two experiments on noisy TIDIGITS test data. In the first
experiment training was performed on the training parts of the
noisy TIDIGITS database. In this case the test was run for both
known string length and unknown string length. The results are
shown in Figure 4. The performance of the system with
quantization approaches the baseline system (unquantized
system) with increasing codebook size, however, the
convergence rate is slower than in the clean train/clean test case
and we need a codebook of order 16-32 in order to reach the flat
part of the curve. The performance on the known length case is
better, as expected, but its behavior as a function of codebook
size is similar to that of the unknown length.

The second experiment tested performance in conditions of
mismatch between testing and training. The training was
performed on the clean database while the testing was performed
on the noisy one. The results are shown in Figure 5. It appears
that under mismatch conditions the relative degradation caused
by variance quantization is very small and for codebook sizes of
16 and above the quantization actually improves performance,
reaching the peak codebook sizes of 64 to 128.

The reason that the quantized version performs better than the
unquantized is probably the same reason that the grand variance
improved noise robustness: “over-training” of the variances in
the clean database, created some strange “outlier” variances



which were ineffective in the noisy environment. The
quantization process probably mapped those “outliers” to better
behaved centroids, thus actually improving performance in noise.
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Figure 4: Performance of variance quantization with
noisy train/noisy test. k_l =known-length, with Q and

w/o Q = with and without variance quantization.
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Figure 5: Performance of variance quantizaion in clean
train/noisy test conditions.

5. CONCLUSIONS
This work shows that continuous density HMM is quite robust to
divergence based quantization of the variance vectors.  In some
cases vector quantized variance may even improve recognition
result.  We have also shown that the proper choice of distortion
measure gives the robustness in performance.  This proposed
divergence based vector quantization should be equally
applicable to other methods that rely on a quantization of the
mixture kernels.

Quantizing variances can lead to significant savings in storage,
memory access and computations. In a system with limited
resources, this option is highly desirable.
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