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ABSTRACT

In this paper two new blind channel identification methods suited to mul-
ticarrier system (OFDM) exploiting the redundancy introduced by the ad-
junction of a cyclic prefix at the emitter and relying on the evaluation of
the received signal autocorrelation matrix are presented. The proposed al-
gorithms are able to identify any channel without any constraint on their
zeroes location (including non-minimum phase channels) and are robust to
the addition of white noise. Moreover a further enhancement of the estima-
tion accuracy can easily be achieved by taking advantage of already present
training symbols in current systems operating in a semi-blind context. Fur-
thermore one of the two identification strategies has a very low arithmetical
complexity which makes it particularly attractive in practice. Notice that
these methods are not restricted to classical DFT-type modulators and still
apply with any perfect reconstruction modulator.

1. INTRODUCTION

The need for high data rates motivated the search for blind
identification and equalization methods since they avoid the use
of training sequences [1, 2]. However blind methods can also be
used in cooperation with training symbols in order to improve their
performance and are in that case referred as semi-blind methods
[3]. This allows a better tracking of channel variations between
two reference symbols.

There has been recently a large increase in interest towards
multicarrier modulations [4]: it has been adopted for terrestrial
digital broadcasting (Digital Audio and Video Broadcasting DAB,
DVB) and high speed modems over twisted pairs (Asymmetric
Digital Subscriber Line: ADSL).

In this paper, a new (semi)-blind method suited for Orthogonal
Frequency Division Multiplexing (OFDM) systems exploiting the
redundancy introduced at the emitter by the adjunction of the cyclic
prefix and the LossLess (LL) Perfect Reconstruction (PR) property
of the modulator filterbank is presented. Instead of throwing away
the samples corresponding to the Guard Interval (GI) our technique
takes into account the information hidden in these samples by esti-
mating portions of the full received vector autocorrelation matrix.
Our method relies on the usual design of the guard time: the usual
cyclic prefix used in DAB or xDSL systems (i.e. not the trailing
zero precoder proposed in [5, 6]) and straightforwardly applies to
classical standardized OFDM systems. Moreover it is not restricted
to Discrete Fourier Transform (DFT) based multicarrier systems
and works with any LL PR filterbanks modulator. Two identifica-
tion results have been derived: a simple direct one like in [5] and
a more elaborate one based on second order equation that, unlike
in [5], can be easily solved by Cholesky type decompositions. The
first identification result does not require any eigen value decom-
position as done in [7, 6, 8] and can lead practically to easier real

time implementations. Though based on the inherent cyclostation-
narity induced at the emitter by OFDM systems and unlike other
proposed methods [9, 10, 5], our approach does not refer directly
to cyclocorrelations: that way the well-known slow convergence of
cyclospectra estimators is avoided [11].

Notice that the proposed identification results do not require
any assumption on the channel zeros location unlike methods based
on output diversity [7, 12, 13] and is also robust to channel order
overestimation.

First a general OFDM system scheme is introduced in section
2. Then section 3 presents the new blind identification methods
and section 4 describes their practical implementation. Simulations
results are shown in section 5.

2. NOTATIONS AND DESCRIPTION OF THE OFDM
SYSTEM

This section presents a discrete model of the baseband OFDM
system and intends to settle the notations used along this paper.

As illustrated in figure 1, a multicarrier system first modulates
the sizeN input digital vectorS(k) using an orthogonal matrix
F (which is classically an Inverse DFT) and then a cyclic prefix
of lengthD is appended between each time domain block vector
s(k) to be sent sequentially through the channel. The channel is
modeled by a linear filterc and the addition of a noisebn.

In the following, let(:)T be the operator denoting transposi-
tion, (:)? conjugation and(:)H =

�
(:)t

�?
. Also define the operator

~(:) as : ~G(z) = G(z�1)H .
The total number of samples to be transmitted in the time do-

main is thusP = N +D. Denote by :
S(k) := (S0(k); : : : ; SN�1(k))

T

s(k) := (s0(k); : : : ; sN�1(k))
T

s
gi(k) := (sgi0 (k); : : : ; s

gi
P�1(k))

T

v(k) := (v0(k); : : : ; vP�1(k))
T

r
gi(k) := (rgi0 (k); : : : ; rgiP�1(k))

T

wheresgip (k) = sN�D+p(k) for 0 � p � D � 1, sgip (k) =

sp�D(k) for D � p � P � 1 andsgip (k) = sp+kP , bp(k) =

bp+kP , rgip (k) = rp+kP for 0 � p � P � 1.
A more general communication system representing jointly the

modulation and the cyclic prefix adjunction by using the filterbank
formalism is provided below. This model has the advantage to
include both the particular case of figure 1 but also any multiple
access transmission systems as explained in [14]. Note that the
general OFDM system corresponds to the one depicted in figure 2
where the usual scalar modulation matrix is replaced by the more
general filtering matrixG(z) covering filters of length larger than
the number of subbands (which enable a better frequency selectiv-
ity).



DefineH(z) asH(z) := [Ggi(z)
T
; G(z)T ]

T

where theD �
N matrixGgi(z) stands for the lastD rows ofG(z). In the fol-
lowing, the modulator matrixG(z) is assumed to verify the LL PR
(orthogonality in the scalar case) property :G(z) ~G(z) = IN�N .

The system can obviously be represented in a more compact
fashion as described figure 2 where the matrixH(z) performs in
the same time the modulation and the cyclic prefix adjunction.

Denoting byc := (c0; : : : ; cL; 0; : : : ; 0)1�P the channel im-
pulse response and byC(z) its z-transform, the linear convolution
by the channelr(z) = C(z)s(z) can be expressed in a block form
as rgi(z) = C(z)sgi(z) whereC(z) is the following polyphase
subband channel filtering matrix :

C(z) =

2
66664

c0 z�1cP�1 � � � z�1c1

c1 c0 &
...

... & & z�1cP�1
cP�1 � � � c1 c0

3
77775

Since the channel orderL is assumed to fulfillL � D � N � P ,
C(z) can be decomposed intoC(z) = C0+z�1C1 whereC0 is the
P � P Toeplitz matrix with first column(c0; � � � ; cL; 0; � � � ; 0)T

and first line(c0; 0; � � � ; 0) andC1 is theP � P Toeplitz matrix
with first column(0; � � � ; 0)T and with first line(0; � � � ; 0; cL; � � � ; c1).

The expression of the received block vectorr
gi(z) can thus be

expressed as a function of the input blockS(z) :

r
gi(z) = C(z)H(z)S(z) (1)

Finally, assuming a white input signalSn(k) with variance
�2S = 1, definingHi by H(z) =

PT

i=0Hiz
�i andH�1 =

HT+1 = 0 for conciseness sake, equation (1) turns into :

r
gi(z) =

"
T+1X
i=0

(C0Hi + C1Hi�1)z
�i

#
S(z) (2)

3. THE NEW BLIND CHANNEL IDENTIFICATION
RESULTS

Blind methods often require extensive computations [2]. This
section first details the simple new identification method and a vari-
ant with a greater arithmetical complexity but achieving a more
accurate estimation.

Intuitively the identification result relies on the following prop-
erty: the adjunction of the cyclic prefix modifies the structure of
the modulator and helps to suppress the Inter Block Interference so
that a meaningful portion of the productC0C

H
0 can be found in-

tact on the upper right and lower left corners of the received signal
vector autocorrelation matrixRrr := E [rgi(k)rgi(k)H ] (thanks to
the modulator LL PR propertyG(z) ~G(z) = IN�N ). Based on
this observation, the channel coefficients can be evaluated up to a
scalar factor (intrinsic indetermination present in all blind method)
by calculating some elements of the auto-correlation matrixRrr.

3.1. The low arithmetical complexity algorithm

The proposed procedure is summarized in the following theo-
rem and is further described below.

Theorem 1 Assuming the first channel coefficientc0 6= 0, the
channel orderL < D and a white additive noisebn, the chan-
nel vectorc can be directly read (up to the scalar coefficientc?0)
from the first column of the autocorrelation matrixRrr = [Ri;j ]:

c0
?(c0; : : : ; cL) = (RN+1;1; : : : ; RN+1+L;1) .

Proof: using (2) leads to the expression of the autocorrelation
matrixRrr =

PT+1
i=0 (C0Hi + C1Hi�1)(C0Hi +C1Hi�1)

H +
�2bIP�P where�2b := E [kbnk

2] and IP�P denotes theP � P
identity matrix.

Applying the perfect reconstruction equation, the autocorrela-
tion matrixRrr elements can be simplified:

Rrr = C0JC0
H + C1JC1

H + �2bIP�P

whereJ = SR
N + SL

N + IP�P andSR (respectivelySL) rep-
resents theP � P right (respectively left) shift matrix “with lost”
defined bySRi;j = 1 if j = i+1 and0 otherwise andSL = SR

H .
Due to the particular structure of the matrixC1, it can be shown

that:

C1JC1
H = C1C1

H =

�
�C1

�CH
1 0L�(P�L)

0(P�L)�L 0(P�L)�(P�L)

�
(3)

On the other hand the productSRNC0
H has the following

form:

SR
NC0

H =

�
0D�D �C0

0N�D 0N�D

�
where theD � D matrix �C0 is the Toeplitz Matrix with first row
(c0

?; : : : ; cL
?; 0; : : : ; 0) and with first column(c0?; 0; : : : ; 0). Now

it becomes clear that the first column ofC0SR
NC0

H is null and
that its first row is equal toc0?� (0; : : : ; 0| {z }

N times

; c0; : : : ; cL; 0; : : : ; 0| {z }
D�L times

).

Finally the first row and the first column ofC0C0
H are equal

to L1 := c0 (c0
?; : : : ; cL

?; 0; : : : ; 0) and toC1 := LH1 which
leads, thanks to (3) and the previous remark, to theorem 1

3.2. Cholesky decomposition based method

Practically, the calculus ofRN+1+i;1 is performed iteratively
by usual averaging techniques who lead to estimation errors. This
observation motivated the search of a way to improve the accuracy
of the channel estimation. This seems all the more feasible since
for the moment only the first column of matrixRrr is used: in-
tuitively only a part of the available information of matrixRrr is
taken into account. One could expect that exploiting a larger por-
tion of Rrr would lead to better performance in convergence rate
and the method detailed below confirms our expectations.

Let �R and �C0 be respectively the submatrices ofRrr andC0

defined respectively by�Ri;j = Ri+N;j for 1 � i; j � L + 1 and
�Ci;j = C0i;j for 1 � i; j � L + 1. Using these notations, it can
be shown that the Cholesky factorization of�R provides directly�C0

up to a phase coefficient sinceRrr has the following structure:

Rrr =

2
4 � � �C0

�CH
0

� � �
�C0

�CH
0 � �

3
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This observation leads to theorem 2.

Theorem 2 Assuming the first channel coefficientc0 6= 0,the chan-
nel orderL verifying2L < N and a white additive noisebn, the
channel vectorc can be obtained up to a scalar coefficient from
the Cholesky factorization of the submatrix�R = �C0

�CH
0 of the au-

tocorrelation matrixRrr.

3.3. Comments on the results

The two previous identification theorems deserve some com-
ments.



Arithmetical complexity: as expected the second method is
more arithmetically expensive: it requiresO(L2) operations to be
performed for each OFDM received block of symbols whereas the
first one only requiresO(L) operations;

Assumptions: it is worth noting that the only requirements on
our two methods is that the first channel coefficientc0 has to be
different from zero (i.e. the synchronization has to be accurately
achieved), which is a lighter assumption than in [6] where bothc0
andcL have to be different from 0. A direct consequence is that
our method is naturally robust to a channel order overestimation
and does not require any constraint on channel zeroes location;

Robustness to the noise:surprisingly, in both method the
noise has ideally no impact on our estimation result. Indeed, when
dealing with stationary additive and uncorrelated noise, only the
diagonal terms of matrixRrr are affected which are not used in
the two previous theorems.

4. PRACTICAL IMPLEMENTATIONS, ESTIMATION
STRATEGIES AND PROPERTIES

4.1. Convergence rate

In practice, the autocorrelation matrix needs to be estimated.
This task can be performed iteratively by classical averages tech-
niques e.g. :R̂(N)

rr := 1
N

PN�1
k=0 r

gi(k)rgi(k)H .
Assuming a second order stationary input signal, since the chan-

nel order is assumed to be finite,̂R(N)
rr converges in the mean

square sense toRrr. Therefore it is possible to show that the chan-
nel estimation is unbiased (up to a scalar factor) and the estimation
mean square error (MSE) is upper bounded byO( 1

N
).

For the second method, the repercussion of the estimation er-
rors in a Cholesky factorizationC �R of �R lead to a matrix which is
not exactly Toeplitz. In that case the distance betweenC �R and �C0

needs to be minimized in order to retrieve the channel coefficients
:

(ĉ0; : : : ; ĉL) = argmin
(c0;::: ;cL)

k �C0(c0; : : : ; cL)� C �Rk (4)

wherek:k stands for any matrix norm.
However in practice a bad conditioning of the real matrix�R

can occur and in that case estimation errors can lead to a com-
pletely erroneous result (far from the true Cholesky factorization).
A solution is to work in a semi-blind context as detailed in the next
paragraph where the autocorrelation matrix estimator is initialized
thanks to reference symbols. This allows to reduce the magnitude
of the estimation errors which are really critical when dealing with
ill-conditionned matrices.

Notice that the identification result provided in equation (4) is
not restricted to a theoretical interest since it can be shown that
its resolution in the mean square sense only consists in a matrix
multiplication. Here no complex solving of a non-linear system of
equations is required as opposed to [10, 5].

4.2. Semi-blind identification

An inherent problem to blind identification methods is their
rather slow converging rate [2]. This drawback often prevents their
use in the practical context where method based on training se-
quence are preferred. However it is possible to merge the advan-
tages of both approaches operating in a semi-blind context [3].

The idea is to refine the pilot based estimation along the frame
blindly. This allows a better tracking of the channel variations.

The two proposed identification methods can easily be used
in a semi-blind context. Indeed it is possible to use OFDM refer-
ence symbols to initialize the estimation of the channel coefficients
which provides a “reference” correlation matrix. This matrix is
then used in the iterative averaging process as a mean to increase
the robustness of the estimator.

As illustrated in the simulation section, this procedure practi-
cally enhance the channel estimation convergence rate.

5. SIMULATIONS AND CONCLUSIONS

This section presents a comparison between the classical DAB-
like channel identification method based on a reference symbol in-
serted at the beginning of each frame and the two identification
algorithms proposed in this paper. All results are obtained running
Monte Carlo simulations based on 100 trials.

The symbols to be modulated by the IDFT belong to a QPSK
constellation with average energy�2S = 1. They are independent
and identically distributed.

All evaluations are made for aN = 128 carrier OFDM system
with a cyclic prefix ofD = N=4 = 32 samples. The channel
to be estimated is a typical rice channel of orderL = 30 whose
frequency impulse response is depicted in figure 3.

Robustness to noise:in figure 4, the Mean Square Error (MSE)
on the estimated channel coefficients is plotted versus the num-
ber of OFDM symbols received for various Signal to Noise Ratios
(SNR):+1 (o), +10 dB (�) and -5 dB (4). This figure illustrates
the convergence behaviour of the low arithmetical complexity iden-
tification algorithm and its ability to identify the channel even when
more noise than signal is received.

Cholesky versus direct identification: a comparison of the
convergence rates of the two identification methods is provided
figure 5 for a fixed SNR of 10 dB: the “low cost” algorithm (4)
and the Cholesky decomposition based algorithm (�). In addition
for reference, the “low cost” algorithm behaviour is provided in
the noiseless case (o). The simulation shows the clear improve-
ment brought by the the Cholesky based algorithm over the low
cost one: it performs even better at a SNR of 10 dB than the low
cost one in the ideal noiseless case.

Semi-blind context: figure 6 illustrates how the use of refer-
ence symbols at the beginning of each frame improves the accuracy
of the blind channel estimation. In the scenario used 3 frames of
100 OFDM symbols are transmitted and the estimation MSE given
by the classical OFDM method, by the Cholesky based algorithm
used in the blind context (�) and used in cooperation with pilot
symbols (�) are plotted. It clearly appears that, the proposed semi-
blind identification strategy allows at the end of a frame a further
gain of about 3dB on the MSE compared to the classical method.
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Figure 1:OFDM discrete baseband transmission system model
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Figure 2:General OFDM transmission system
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Figure 3:Rice channel frequency response
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Figure 5:Cholesky improvement
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Figure 6:Classical, blind and semi-blind identification


