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ABSTRACT

This paper presents a method for obtaining numerical estimates
of high rate vector quantization (VQ) performance suitable for
sources for which the pdf is not analytically available. In the pro-
posed method, the VQ point density is described from a Gaussian
mixture model optimized for the data. Employing this method for
LPC spectrum quantization, we obtain high rate expressions for
both the average spectral distortion (SD) and the distribution func-
tion of the SD. We estimate the minimum bits required for a quan-
tizer to obtain an average SD of 1 dB and the outlier statistics for
that quantizer. We find that approximately 3 bits can be saved as
compared to a 2-split LSF-based vector quantizer.

1. INTRODUCTION

The linear prediction coefficients (LPC) are often used to represent
the short-time spectral envelope of the speech signal in source-
filter based speech coders. The LPC parameters generally con-
sumes a considerable fraction of the total bit rate for many low rate
coders. Much effort has therefore been spent on efficient quantiza-
tion of LPC parameters. The spectral distortion (SD) has become
the standard measure for evaluating spectrum quantization. Per-
formance is usually presented as the average SD and the percent-
age of outlier spectra having SD greater than predefined thresh-
olds [1]. For sufficient quality, a spectrum quantizer must provide
an average SD around 1 dB. For unconstrained VQ, technology
limits codebook sizes to a maximum of, say 13-15 bits, for current
hardware. This is not sufficient to achieve the 1 dB requirement.
However, the minimum size for a quantizer achieving a 1 dB per-
formance is not thoroughly established. Informal rough bounds
around 20 bits have been given in e.g. [2, 3]. We will in this paper
explore the performance bounds with the assistance of high-rate
VQ analysis.

In VQ literature much theoretical work has been presented for
high rate quantization, see e.g [4, 5]. The theory presents expres-
sions for minimum distortion of quantizers operating at high rates.
The formulas contain integrals over the probability density func-
tion (pdf) of the data, and closed form expressions can only be
derived for simple pdfs. For such analytically tractable pdfs, there
is a high accuracy in the performance predicted by high rate theory
and the performance obtained for optimally designed, e.g. using
the generalized Lloyd algorithm [6], high rate quantizers. An ex-
ample of this for a Gaussian source can be found in [7]. For a
general and unknown data pdf, the formulas can be calculated nu-
merically using histogram pdf estimates [5]. However, histograms
are only feasible for low dimensions and when the available data

sets are large. Thus, histograms have only been applied to split VQ
structures. The high rate performance bound for a full dimensional
LPC VQ has not yet been rigorously examined.

In this paper we present a new method to obtain high rate ex-
pressions that are numerically tractable for moderate dimensions.
In practice, this means that we can handle dimensions of inter-
est for spectrum quantization. We model the underlying pdf of
the vectors in a database as a mixture of Gaussians and optimize
the parameters of the model. The number of model parameters is
sufficiently low for obtaining accurate high rate predictions of the
performance of 10-dimensional unconstrained LPC quantization.

2. HIGH RATE QUANTIZATION

Consider ad-dimensional vector quantizer withN partitions
i

with corresponding reconstruction vectorsci. Let the performance
of the quantizer be expressed by the average distortion

D = E[kx� ~xkr] (1)

wherek � k denotes theL2 norm. According to asymptotic quanti-
zation theory [4, 5], the high rate distortion approximation can be
expressed as
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whereDH is the integral,Vd is the volume of ad-dimensional
sphere with unit radius and�(x) is a continuous VQ point density
function that integrates to one. A point density which minimizes
DH is
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Now consider the case where we estimate a model densityfM(x)
for the data and then design a high rate quantizer with optimal
point density�(x) for that model. If we employ this quantizer in
the quantization of data having an unknown pdffX(x), DH can
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wherefxng
Nx
n=1 are vectors from the database we are modeling

andfyng
Ny

n=1 are “synthetic” data generated from the model.
Thus, we have now obtained an expression which predicts the

high rate performance of a vector quantizer designed from data
having the probability density functionfM(x) and evaluated on
data having probability density functionfX(x).

Assuming perfect modeling, (2) is formally a lower bound
valid in the domain of fine quantization. However, our experimen-
tal experience for standard pdfs is that results close to the bound
are achievable with VQ training provided that the number of en-
tries in the VQ codebook is sufficiently large. In other words, the
rate of the VQ must be sufficiently large. For small codebooks, and
in particular for low dimensions, the assumptions of the deriva-
tion are violated and, consequently, the bound will give misleading
guidance for performance.

3. GAUSSIAN MIXTURE MODELS

One class of pdfs, which has been widely used for density esti-
mations in a variety of applications, e.g [8] is the family of finite
mixture densities, where the density function is a weighted sum
of component densities. The case where the component densities
are Gaussian is the most common and any continuous probability
density function can be approximated arbitrarily closely by such a
Gaussian Mixture (GM) density.

However, for some sources, such as LPC-parameters, the sup-
port of the source pdf is bounded and this boundary can be quite
complex. To describe this boundary with a Gaussian mixture we
would need a prohibitive large number of mixture components.
Therefore we let our model density,fM(x), consist of an un-
bounded GM density,fGM(x), multiplied with a bounding func-
tion fc(x),

fM(x) =
fGM(x)fc(x)R

Rd fGM(x)fc(x)dx
(5)

where the denominator assures that the model pdf integrates to
one. The functionfc is one inside the bounded support and zero
outside. We can then express (4) as
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The gain of using a model pdf with a bounded support is illustrated
in Figure 1.

We furthermore constrain the covariance matrices of the GM
components to be diagonal, a constraint which increases the num-
ber of mixture components required for a given model accuracy
but still reduces the total number of model parameters [8]. By ro-
tating the coordinate system such that the data vectors are mapped

onto the eigenvectors of the covariance matrix of the data, a low
loss in modeling capabilities occurs due to constraining to diago-
nal component covariance matrices

4. SEARCH FOR OPTIMAL VQ POINT DENSITY

The expectation-maximization (EM) algorithm [9] is widely used
in the case of an unbounded GM model pdf. For the bounded
model pdf an estimation scheme where the same criterion, i.e. the
likelihood function, is maximized can easily be derived. In this
case the log likelihood function normalized with the number of
data pointsN can be seen as an approximation of an integral

1

N
L(�) =

1

N

NX
n=1

ln fM(x) �

Z
Rd

ln fM(x)fX(x)dx: (7)

We can formulate an EM-like algorithm, referred to as EMbs, by
first differentiating, setting the derivatives to zero and then formu-
late recursive update equations based on previous parameter set-
tings.

(a) (b)

(c)

Figure 1: (a): Cross-section of a three-dimensional
scatter plot of cepstral parameters from a 3:rd order LPC
analysis. (b): The corresponding cross-section for an
8-component EM-estimated unbounded Gaussian mix-
ture density. (c): 8-component EMbs-estimated bounded
Gaussian mixture density.

The EMbs algorithm optimizes the model according to the ML
criterion but this is not what is really desired. For coding purposes
we want to minimizeDH . One straight-forward approach to min-
imize the distortion is to utilize a gradient-based procedure. Then
the model parameter vector,�, is recursively given by
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where� is a positive real-valued constant, i.e. the step-size deter-
mining the amount of movement, andT is a matrix. The partial
derivatives are straight-forward to express and details can be found
in [10]. In our implementationT is the unity matrix. We refer to



this algorithm as HRO. A few iterations of the EMbs algorithm
gives the initial parameter set for HRO.

Hence, we have used two algorithms, EMbs and HRO, for op-
timizing the VQ point density. Both require a substantial amount
of iterations to converge. In the following experiments, we essen-
tially rely on HRO.

5. SPECTRUM CODING

Spectral distortion (SD) has become the standard measure for eval-
uating the performance of spectrum coding. SD is defined as an
integral over a frequency region
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using a normalized frequency scalej�j < 1=2, and whereH(z)

and ~H(z) are the original and the quantized synthesis filters, re-
spectively, for the current frame. The spectral distortion is often
calculated in a limited region of the spectrum�0 < 1=2, there-
fore we have incorporated the argument in (9). The most common
choice of region in the literature is�0 = 3=8, corresponding to the
0–3 kHz band for a 8 kHz sampling frequency.

When evaluating over a database the performance is mostly
presented as the average SD and the percentage of outlier spectra
having SD greater than 2 % [1]. The average SD is most often
calculated as

SDMRS =
1

ND

NDX
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p
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whereND is the number of vectors in the database.
For the experiments we compiled a database of LP spectrum

vectors from speech sampled at 8 kHz and low-pass-filtered at
3.4 kHz. A 10th order LP analysis using the stabilized covari-
ance method with high-frequency compensation and error weight-
ing (following [1]) was performed every 20 ms using a 25-ms anal-
ysis window. A fixed 10-Hz bandwidth expansion was applied to
each pole of the LP coefficient vector. The database, which in-
cludes a large number of different speakers of both genders and a
variety of languages, consists of 820 000 vectors. The evaluation
set consists of an additional 48 000 vectors.

5.1. Cepstral Representation

In order to use the ideas presented in the previous sections to calcu-
late a prediction of achievable performance in spectrum coding we
have to choose an LPC parameter representation. The cepstral rep-
resentation suits our purposes. For cepstral coefficients we have,
as pointed out in [3,11], by the Parseval relation, that for full-band
spectral distortion (�0 = 1=2 in (9))

SD2 = 2 � 102 � (log10 e)
2
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wherecn and~cn are the cepstral coefficients. Note that in order
to minimizeSDMRS we need to user = 1 in our estimation al-
gorithms, c.f. (1). For a band limited distortion it can be shown
that

SD2�0 = 2 � 102 � (log10 e)
2 (c� ~c)T B�0 (c� ~c) (12)

wherec and~c are infinite-dimensional vectors containing the cep-
stral coefficientscn and~cn, respectively, and whereB�0 is a band
limiting matrix having components
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The infinite dimension that is generally needed to represent the
LPC parameters in the cepstral domain obviously imposes a prac-
tical problem. However, the magnitudes of the higher redundant
cepstral coefficients decrease towards zero and for 10th order LP
polynomials the sum can be truncated for coefficientsn � Nmax,
whereNmax is around 32 to 64, without significant loss of accuracy
[3, 11]. Using the fact that the cepstral coefficientscn for n > d
are functions of the non-redundant coefficientscl = fcng

d
n=1, and

the practical dimension limitNmax, we can for a high-resolution
quantizer express the spectral distortion in terms of thed first non-
redundant coefficients
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T
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using a Taylor series expansion. This expression has a form similar
to the high rate expressions in [5]. The weighting matrix has a
structure
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5.2. Adopting a Weighted Distortion Measure

A generalization of the high-rate formula (2) for a weighted dis-
tortion measure
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with a data-dependent weight matrixV(x), has the same form as
in (2) butDH is in this case, withV(x) = H�0(x)
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Since the weight matrixH�0(x) is independent of the density
model parameters, the HRO algorithm must be only slightly mod-
ified to adopt a weighted distortion. The experiments presented in
the paper use such a modified HRO algorithm.

5.3. Minimum Required Number of Bits for Spectrum Coding

By combining the high rate expressions incorporating the effects
of the higher cepstral coefficients and band-limited spectral dis-
tortion, we can now estimate the performance of single-stage VQ



of the LPC parameters. In Figure 2 we have plotted the esti-
matedSDMRS in the 0–3 kHz band for 10-dimensional cepstrum
VQ based on a 256-component bounded GM model. The model
was estimated using the HRO algorithm and the higher cepstral
coefficients were truncated atNmax = 64. According to the curve,
a 22-bit quantizer will yield anSDMRS of 1 dB. The performance
of a 22-bit 2-split LSF quantizer employing weightings according
to [1] is also plotted for a comparison of the performance of typical
contemporary VQ. The gap between the 2-split and the high rate
prediction corresponds to approximately 3 bits.
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Figure 2: PredictedSDMRS by the high rate approxima-
tion for 10-dimensional cepstrum VQ based on a 256-
component bounded GM model. The model was esti-
mated using the HRO algorithm. The performance of a
2-split LSF quantizer is marked by a circle.
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Figure 3: Estimated pdf of the SD�0 for a 22-bit
10-dimensional cepstrum quantizer based on a 256-
component bounded GM model. The model was esti-
mated using the HRO algorithm.

As previously mentioned, it is common for assessing spectrum
quantization performance to report a spreading measure comple-
menting the average distortion. It can be shown [10, 12], using
high rate arguments, that the probability that the distortion is less
than a valueg can be expressed as
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Note that (19) gives the distribution function of the high rate VQ
distortion. The prevalent spreading measure for spectrum coding

is the percentage of outlier spectra having SD greater than 2 dB,
which for the 22-bit quantizer is 0.7 %. Differentiation of (19)
yields the pdf of the spectral distortion, which is depicted in Fig-
ure 3.

6. CONCLUSIONS

In this paper we model the underlying probability density function
of vectors in a database as a Gaussian mixture model and estimate
the parameters of the model. Having an analytical expression of
the density, we then derived an expression for predicting the per-
formance of vector quantization using high rate approximations.
We apply the method to quantization of LPC-parameters and con-
clude that 22 bits are needed for meeting the standard requirements
for spectrum coding. Further experiments are required to verify
that such a 22-bit quantizer meets or exceeds subjective demands.
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