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ABSTRACT Section 2, we propose an 8x8-block based motion estimation

M hni | d i . . | using Kalman filtering §x8-KF) to improve the motion vector
any techniques are currently used for motion estimation. In ogjimateg resulting from both the conventional three step

the block-based approaches the most common procedure appliegIgorithm (TSA) [3-5] and the 16x16-KF proposed in [9].
is the block-matching based on various algorithms. To refine thegg yion 2.1 introduces the state-space representation for the
motion estimates resulting from the full search or any coarse i o vector. the Kalman equations based on this later are
search algorithm, one can find few applications of Kalman given in sect’ion 2.2. The comparative results obtained for

filtering, mainly in the mFrafram_e sc_heme. _Th's Paper presents yicerent classes of video sequences are presented in section 2.3.
an 8x8-block based motion estimation which uses the Kalman

filtering technique to improve the motion estimates resulting Section 3 considers the interframe situation. The problem with
from both the three step algorithm and the 16x16-block basedthe use of Kalman filtering is that its conventional modelling is
Kalman application of [9]. In the interframe scheme, due to not appropriate when discontinuities in the dynamic behaviour
discontinuities in the dynamic behaviour of the motion vectors, appear. Therefore, the filtering by approximated densities FAD
we propose the filtering by approximated densities [10]. This is proposed in order to improve the motion vector estimates
application uses a simple form involving statistical resulting from both the conventional FSA and TSA algorithms.

characteristics of multi-modal distributions. The FAD [10] is a non-linear, adaptive filtering technique. It
uses a maximum entropy principle under linear constraints. The
1. INTRODUCTION method is essentially based on the development of a logarithm

for the computation of priori and a posteriori probability
In the field of motion estimation for video compression many density functions as linear combinations of several functions
techniques have been applied [1-5]. It is now quite common tochosen according to some specific criterion. Section 3.1, we
see the Kalman filtering technique and some of its extensionselaborate functions of an exponential type for the definition of
used for the estimation of motion within image sequences. probability density that characterise the block-motion vector.
Particularly in the pixel-recursive approaches, which suit very The non-linear filter is then implemented in section 3.2. In
much the Kalman formulation, one finds various ways of section 3.3, the results are given and the superior performance
applying this estimation technique both in the time and of the filter on class A, B and other well known video sequences
frequency domains. On a very general perspective, we find usds demonstrated.
of Kalman filter (KF), the extended Kalman filter (EKF) and

the parallel extended Kalman filter (PEKF) [6-8]. 2. INTRAFRAME ESTIMATION

In the block-based motion-compensated prediction approachesp 1 State representation
the most common procedure is the block-matching technique.
There are several well known algorithms that perform the block The scanning in a frame is from the top left to the bottom right.

matching motion estimation, among them being the full searchThe motion vector of a macroblock can be predicted from that of
algorithm (FSA) [3-5] that determines the motion vector of a jts |eft spatial neighbour. The measured motion vectors are

macroblock by computing the MAE at each location in the gptained through a conventional three step procedure. In the
search area. This is the simplest method, it provides the bessame manner as in [9], the intraframe motion estimation process
performance, but at a very expensive computational cost. is modelled through an auto-regressive model which produces

To reduce this computational requirements, several heuristicthe state-space equations.

search strategies have been developed, as for example the tw@ye define the 8x8-block based representation as follows: each
dimensional logarithmic search, the parallel one-dimensional 16x16-block yields a zig-zag sequence of four 8x8-blocks. This
search, etc [3-5]. These are often referred to as fast searc@orresponds to a conventional pixel decimation for block
algorithms. matching in an 8x8 bock. The motion vector of these sub-blocks
Lately, some new fast strategies as well as motion estimation's defined ad/'= (xy), wherex andy denote the horizontal and
have been proposed. But, very few applications are available of€rtical components, respectively. These two components are
Kalman filtering for the estimation of motion vectors resulting assumed independent.

from a 16x16-block based approach (16x16-KF), [9].



The motion vector of an 8x8-block can be predicted from the sequences: ‘Alkistis’ class A, ‘Carphone’, ‘Foreman’ and a sub-
one of the previous 8x8-block according to the time inklek sampled sequence of ‘News'.

the zig-zag order using the state equation: . . .
g-za9 9 q It is observed that all the above listed techniques can be

V(k+1)=F(K)V(K)+WK) (@) qualified as sub-optimal techniques. Hence, in any case the

. . ) . . results expected are very close in terms of average PSNR:
whereWK) is the state noise vector, with covariance mafix

The state noise componentis w are assumed independent and Table 1. Comparative results on the average PSNR

Gaussian distributed with zero-mean and same varignébe

matrix.F(k) is .the transition. matrix which describes the Average PSNR dB

dynamic behaviour of the motion vector from one 8x8-block to Sequences FSA TSA 16x16-HL__ 8x8-KL

the next. As the motion vector components are independent th —

matrix is diagonal. Alkistis 30.769 30.664 30.670 30.821

The Kal . 4 " , . k) i Carphone 33.793 33.578 33.58% 33.67]2
e Kalman filterupdates the motion estimatidk-1) given o, oo 32649 32235 32240  32.34p

the previous measurement at time indek, according to the

new measured motion vectd@(k)=z(k) and the measurement LNEWS 27.686 27.246 27.254 27.414

equation: As expected the 8x8-block based proposed approach results in

an even greater PSNR better than both the TSA and 16x16-KF.
Z(K)=V(k)+N(k) (2)

. ) ) . For the particular state-space representation used, when the real
where N(k) is the measurement noise vector with covariance motion corroborate the assumptions made regarding, only
matrix R. The noise components, ny are assumed independent  translational motion with very smooth changes, the 8x8-KF is
and Gaussian distributed with zero-mean and same variance  even better than the one resulting from the FSA, as observed

It is observed that the measured motion vectors are actuall)yvhen monitoring the average PSNR values.
obtained from the TSA run on a 16x16-block basis that yields

the zig-zag sequence of four measured motion veZ{&jswith 3. INTERFRAME ESTIMATION
same values on the 8x8-block basis. By this mean the Kalman3 1
filter has four measurements instead of one to adjust the motion "
estimateV(k/k) when the assumption of smooth changes is not gafore
strictly valid. As a result, it is expected that we have a better
motion estimate for the 8x8-motion compensation procedure.

Block motion characterisation

implementing FAD, we must define am priori
statistical distribution characterising the motion vector. A
statistical study has been conducted using the full search
algorithm for each 16x16-block of a frame over 100 frames of
‘Missa’ and ‘Alkistis’, 130 frames of ‘Mother and Daughter’,

_and 50 frames of ‘Carphone’ and ‘Foreman’. We keep the
From the above state-space model (eq. 1, 2) the consecutiv P P

: . . i eneral assumption of displacemextand y independence
motion vectors/(k/k-1) andV(k/K), with error covariance matrix % P P 4 P

P ivel timated ai th " it despite that it is rarely true. Hence, in the following we will
» are recursively estimaed given the pas meagurem ) consider only the developments for tlecomponent of the
and present measuremeik) through the Kalman filter.

motion vector. In a frame at time instaki a block B(l),
Based upon this very basic state-space representation for thé=0,...,98) is characterised by its motion vector. This motion
motion, the conventional Kalman equations are implemented asvector is predicted from the previous frame using the block-
follows. matching technique. Thus, the displacentenakes numerical
values within the range -7, ..., +7, at integer pixel accuracy.

2.2 Linear filtering

e Update with the new measureme(k)Z

K(K) = P(k/k—l).{P(k/k—1)+R(k)}'1 (3) On a frame to frame basis, tlkecomponent (respy) of block

B(l) is rarely long-lasting stationary on one or more of the above
V(KIK)=V/(KTk-1)+HK(K){ Z(K)-V(K/k-1)} (4) possible values. What more likely describes the dynamic
P(K/K)={1-K(K)}. P(k/k-1) (5) behaviour o (resp.y) is jumps from one value to another with

o very short-lasting stationarity on one or more particular values.
e Predictiort

From now on, we consider the multi-model situations. A pair

Vi LR=F( V(KK 6) (M, x) defines the stat@here the available model, belong to
P(k+1/k) = F(K)P(K/K)F(K)+Q(K) (7 a finite set fnd,....md}. A Gaussian probability distribution

for x(k) (resp.y(k)) yields a probability on each moddl Hence

2.3 Results at frame k+1, the statex(k+1) (resp.y(k+1)) has several

probability distributions that are conditional upon each model.
For comparison purposes the FSA, the TSA, the 16x16-KF We define the state space model,
presented in [9] and the proposed 8x8-KF are run for different
classes of video sequences. We use 50 frames of the following



a(k),o(K  Markov chain
(k+1) =K K+ 1B+ W k
4K = AR+ (4
where state noise(k) and measurement noiggx) are Gaussian
distributed with zero-mean and variar@eand R, respectively.

The coefficients 4,b), are taken to be K-state Markov chain,
(a(k),b(k)). Due to the produca(k)x(k), the x-state distribution

(8)

loses its unimodal Gaussian feature. For our application we3.2

consider tri-modal and five-modal approximations:
»  Tri-modal Gaussian approximation

In this case we consider thgk) (resp.y(k)) takes values with
respect to the available modetsd ={x(k)<0}, md={x(k)=0},
md={x(k)>0} and the corresponding Markov coefficients
(an,b), (2, b)), (as, bs). These coefficients and the state
equation (8) without noise define the three possitimit]
Gaussian distributions for(k) (resp. y(k)) with mean and
variancem=h/(1-a) andg*=Q/(1-a?) i=1,2,3.

« Five-modal Gaussian approximation

In the same manner the five possible modelsrads{x(k)<1},

md={x(k)=-1}, md={x(k)=0}, md={x(k)=+1}, md={x(k)>+1}
with the corresponding Markov coefficients, (b), i=1,2,...,5
which define with the state equation (8) the five possible
Gaussian distributions for(k) (resp. y(k)) with mean and
variancem andg?, (=1,2,...,5).

Finally, the density function for the stata(l),b(k),x(k)) can be
written as follows

N N

zP[(a(k),b(k)):(al bla(ab k=3 il f X

1=1 1=1
with Ii f(x)dx=1

11)

Non-linear filtering

In a framek, for each blockB(l), (1=0,...,98) the filtering by
approximated densitiesipdates and predicts the cdimhal

density functions given the new measured motigk)=n,

resulting from the TSA.

The update uses the measurement equation (2) and the Bayesian
formula. That yields the Lagrange multipliéss, (j=0,1,2) of
the densityf(x) conditional upon the measured displacement

"Ao(KIK) ='Ao(KIk-1) + o + 1] + pory?
"A(KK) = A (KK-1) - s - 210
"Ao(KIK) = Ap(KIk-1) +1

wherep, (i=0,1,2)are Lagrange multipliers of the measurement
noise density. The normalisation introduces the external

coefﬁcientsiaj :J'i f (X)dx, such that the updated profiiip

According to our concept, we now define the density functions of the Markov coefficients (i.e. models) is defined by
relative to the non-linear state-space model (8) where the

coefficients &(k),b(k)) are subject to random variations in time.
The distribution taken fora(k),b(k)) is a measure such that

N
Z Pl(a(K, H(R)=(g, b)5i (ab with N=3 or 5.
1=1

Thus, @&(k),b(k)) randomly assumes the values,k), with
respect to the transition probability

my = Pl(a(k+1), (k+ D) = (@, p) /(& B, b ¥ =(;8;B] with
iI=1,...N. 9)

These transition probabilities have been obtained through the

statistical study mentioned above.

We have to express the priori densities forx (resp.y). A

Gaussian distribution is of exponential type. The logarithm of

its density function is linearly developed from the basis
functions:¢y(X)=1, ¢.(X)=X, $(X)=X3 (resp.y).

We define the linear constraints (j=0,1,2) as the expected
values of the functiong, (j=0,1,2). Hence, these constraints

correspond to moments the Gaussian distribution. Thus, the

density for each possible modéat1,...,N) is defined by
f()=exp(Ao + 'A1.X +12,0¢), (10)

where the Lagrange multipliersy, (i=1,...N; j=0,1,2) are

bijectively obtained from the linear constraints, i.e. the moments

of the Gaussian distribution.

"kl k-2 a;
p( )aj N,

p (k1K) =—

Z p' (ki k-1 a;
=1

The displacement estimatex(k/k) used in the motion
compensation procedure, is hence evaluated through the
following expression in terms of the posteriori probabilities

and means:

N
x(k/ k) = Z p.m( K B (12)
1=1

Its numerical value is taken at half-pixel accuracy.

The prediction of the distribution for the block under
consideration in fram&+1 conditional upon the observation in
frame k, is now left. The probabilities of the coefficients
(a(k+1),b(k+1)) are predicted from the above ones and the
transition probabilities (9):
pl(k+1/ K =m. P (k'R il=1... N.

The prediction of the densitiex), (i=1,...N) uses the state
equation (3) to compute the linear constrair(tst 1/k),

=1
1= lo( am(k/K) + b;)



1, = To(Q+a?(g?(k/K)+m?2(k/Kk))+b2+ 2abm(k/k))

where Q is state noise variance. The values of constant
coefficients,a andb;, depend on the modei{d,...,md}.

The predicted distribution which maximises the entropy under
the linear constraints is the distribution for which the Lagrange
multipliers of the density solve the non linear systé(k:+1/Kk)=
E['¢;(x(k+1/))]. Thus, the Lagrange multipliers of the density
are defined in terms of mean and variance resulting from the
constraints as follows:

A (k+1/K) = -1/ 202 (k+ 1/ K

"Ai(k+1/K) =m(k+ 1/ B/o? (k1 B

"Ao(k+1/ k) = -05In( 202 (k+ U K)+In(" )
-m (k+1/ K/20% (k+ 1 R

Finally, the predicted distribution conditional upon the observed
motion through TSA is characterised by its exponential density
function with Lagrange multipliers predicted in accordance with
the FAD-concept.

3.3 Results

The filter has been implemented ftB0 frames of ‘Missa’ and
‘Alkistis’, 130 frames of ‘Mother and Daughter’, and finally 50

frames of ‘Carphone’ and ‘Foreman’ sequences. In all cases, the

3-modal distribution is characterised by the meams-3.5,
m,=0, m;=3.5 and standard deviatioss=0:=1, 30,=0.5; for the
5-modal case we have,=-4, m=-1, m=0, m=1, m=4 and
30,=30:=2.5, 35,=30,=30,=0.5. These values are valid for both
components x and y of the motion vector of each block within a
frame. The filter is initialised once and for all as the first frame

is loaded. It is observed that we do not need any refreshment o o
motion detection as it is often the case when using the Kalmal ]

filter.

The results presented in the Table 2 in terms of average PSNR
to

demonstrate the performance of the technique applied
interframe motion estimation.

Table 2. Comparative results on the average PSNR

AVERAGE PSNR dB

FILTERING BY APPROXIMATED DENSITIES
3-m0da|| 5-modaj 3-mod$l 5-modpl 3-moda| 5-mod

R=0.06 R=0.25 R=1
141.373 41.380 | 41.177 41.273 40.979
41.250 40.983| 41.131  41.317 40.981
6 36.13236.143 | 36.097 36.100[ 36.066 36.064
36.104 _ 36.04 36.072 36.091 36.055  36.
¥ 30.228  30.2 30.2780.432 | 30.246 30.280
30.357__ 30.19: 30.308 30.432 | 30.264 30.293
39 33.78133.884 | 33.658 33.904 | 33.622 33.691
33.939 33.571| 33.656 33.957 | 33.580 33.658
R2 32592 324 32.578p.656 | 32.559 32.537
32.431  32.244 32.413 32.5 32.401 32.4

FSA | TSA

40.977
40.976

Missa 41.06p 40.9

Mother &

Daughter
Alkistis

36.139 36.04
3

4

30.393 30.15

Carphone 33.793 33.5

Foreman 32.649 32.2 88

1 2z

For different state and measurement noises the average PSNR

always greater than the one resulting from the TSA. For each
sequence, we find one or more situations where the average

4. CONCLUSION

For the intraframe motion estimation these are encouraging
results, in the sense that with the appropriate state model and
priori assumptions appropriate to a closer real motion vector
behaviour, we would be able through Kalman filtering to have a
greater PSNR than the full search for any frame of the sequence.

Regarding the applicability of the concept of filtering by
approximated densities in the area of motion estimation the
results are also very encouraging. It would be of interest to see if
a 7-modal approximation would give better results, and of
course what the results of this approach are in the case of
intraframe motion estimation.

Regarding the cost for using such an approach, it is observed
that in all cases, three step plus FAD is still faster than the full
search or three step plus Kalman.
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PSNR resulting from FAD is even greater than the one resulting

from the FSA.



