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ABSTRACT

Many techniques are currently used for motion estimation. In
the block-based approaches the most common procedure applied
is the block-matching based on various algorithms. To refine the
motion estimates resulting from the full search or any coarse
search algorithm, one can find few applications of Kalman
filtering, mainly in the intraframe scheme. This paper presents
an 8x8-block based motion estimation which uses the Kalman
filtering technique to improve the motion estimates resulting
from both the three step algorithm and the 16x16-block based
Kalman application of [9]. In the interframe scheme, due to
discontinuities in the dynamic behaviour of the motion vectors,
we propose the filtering by approximated densities [10]. This
application uses a simple form involving statistical
characteristics of multi-modal distributions.

1. INTRODUCTION

In the field of motion estimation for video compression many
techniques have been applied [1-5]. It is now quite common to
see the Kalman filtering technique and some of its extensions
used for the estimation of motion within image sequences.
Particularly in the pixel-recursive approaches, which suit very
much the Kalman formulation, one finds various ways of
applying this estimation technique both in the time and
frequency domains. On a very general perspective, we find use
of Kalman filter (KF), the extended Kalman filter (EKF) and
the parallel extended Kalman filter (PEKF) [6-8].

In the block-based motion-compensated prediction approaches,
the most common procedure is the block-matching technique.
There are several well known algorithms that perform the block
matching motion estimation, among them being the full search
algorithm (FSA) [3-5] that determines the motion vector of a
macroblock by computing the MAE at each location in the
search area. This is the simplest method, it provides the best
performance, but at a very expensive computational cost.

To reduce this computational requirements, several heuristic
search strategies have been developed, as for example the two-
dimensional logarithmic search, the parallel one-dimensional
search, etc [3-5]. These are often referred to as fast search
algorithms.

Lately, some new fast strategies as well as motion estimation
have been proposed.  But, very few applications are available of
Kalman filtering for the estimation of motion vectors resulting
from a 16x16-block based approach (16x16-KF), [9].

Section 2, we propose an 8x8-block based motion estimation
using Kalman filtering (8x8-KF) to improve the motion vector
estimates resulting from both the conventional three step
algorithm (TSA) [3-5] and the 16x16-KF proposed in [9].
Section 2.1 introduces the state-space representation for the
motion vector, the Kalman equations based on this later are
given in section 2.2. The comparative results obtained for
different classes of video sequences are presented in section 2.3.

Section 3 considers the interframe situation. The problem with
the use of Kalman filtering is that its conventional modelling is
not appropriate when discontinuities in the dynamic behaviour
appear. Therefore, the filtering by approximated densities FAD
is proposed in order to improve the motion vector estimates
resulting from both the conventional FSA and TSA algorithms.
The FAD [10] is a non-linear, adaptive filtering technique. It
uses a maximum entropy principle under linear constraints. The
method is essentially based on the development of a logarithm
for the computation of a priori and a posteriori probability
density functions as linear combinations of several functions
chosen according to some specific criterion. Section 3.1, we
elaborate functions of an exponential type for the definition of
probability density that characterise the block-motion vector.
The non-linear filter is then implemented in section 3.2. In
section 3.3, the results are given and the superior performance
of the filter on class A, B and other well known video sequences
is demonstrated.

2. INTRAFRAME ESTIMATION

2.1 State representation

The scanning in a frame is from the top left to the bottom right.
The motion vector of a macroblock can be predicted from that of
its left spatial neighbour. The measured motion vectors are
obtained through a conventional three step procedure. In the
same manner as in [9], the intraframe motion estimation process
is modelled through an auto-regressive model which produces
the state-space equations.

We define the 8x8-block based representation as follows: each
16x16-block yields a zig-zag sequence of four 8x8-blocks. This
corresponds to a conventional pixel decimation for block
matching in  an 8x8 bock. The motion vector of these sub-blocks
is defined as Vt = (x,y), where x and y denote the horizontal and
vertical components, respectively. These two components are
assumed independent.



The motion vector of an 8x8-block can be predicted from the
one of the previous 8x8-block according to the time index k of
the zig-zag order using the state equation:

V(k+1)=F(k)V(k)+W(k) (1)

where W(k) is the state noise vector, with covariance matrix Q.
The state noise components wx, wy are assumed independent and
Gaussian distributed with zero-mean and same variance q. The
matrix F(k) is the transition matrix which  describes the
dynamic behaviour of the motion vector from one 8x8-block to
the next. As the motion vector components are independent the
matrix is diagonal.

The Kalman filter updates the motion estimate V(k/k-1) given
the previous measurement at time index k-1, according to the
new measured motion vector Z(k)=z(k) and the measurement
equation:

Z(k)=V(k)+N(k) (2)

where N(k) is the measurement noise vector with covariance
matrix R. The noise components nx, ny are assumed independent
and Gaussian distributed with zero-mean and same variance r.

It is observed that the measured motion vectors are actually
obtained from the TSA run on a 16x16-block basis that yields
the zig-zag sequence of four measured motion vectors Z(k) with
same values on the 8x8-block basis. By this mean the Kalman
filter has four measurements instead of one to adjust the motion
estimate V(k/k) when the assumption of smooth changes is not
strictly valid. As a result, it is expected that we have a better
motion estimate for the 8x8-motion compensation procedure.

2.2 Linear filtering

From the above state-space model (eq. 1, 2) the consecutive
motion vectors V(k/k-1) and V(k/k), with error covariance matrix
P, are recursively estimated given the past measurement Z(k-1)
and present measurement Z(k) through the Kalman filter.

Based upon this very basic state-space representation for the
motion, the conventional Kalman equations are implemented as
follows.

• Update with the new measurement Z(k):

K(k) = P(k/k-1).{P(k/k-1)+R(k)} -1 (3)

V(k/k)=V(k/k-1)+K(k){ Z(k)-V(k/k-1)} (4)

P(k/k)={ I-K(k)}.P(k/k-1) (5)

• Prediction:
V(k+1/k)=F(k)V(k/k) (6)

P(k+1/k) = F(k)P(k/k)Ft(k)+Q(k) (7)

2.3 Results

For comparison purposes the FSA, the TSA, the 16x16-KF
presented in [9] and the proposed 8x8-KF are run for different
classes of video sequences. We use 50 frames of the following

sequences: ‘Alkistis’ class A, ‘Carphone’, ‘Foreman’ and a sub-
sampled sequence of ‘News’.

It is observed that all the above listed techniques can be
qualified as sub-optimal techniques. Hence, in any case the
results expected are very close in terms of average PSNR:

Table 1. Comparative results on the average PSNR

Average PSNR dB

Sequences FSA TSA 16x16-KL 8x8-KL

Alkistis 30.769 30.664 30.670 30.821

Carphone 33.793 33.578 33.585 33.672

Foreman 32.649 32.235 32.240 32.342

News 27.686 27.246 27.254 27.414
As expected the 8x8-block based proposed approach results in
an even greater PSNR better than both the TSA and 16x16-KF.

For the particular state-space representation used, when the real
motion corroborate the assumptions made regarding, only
translational motion with very smooth changes, the 8x8-KF is
even better than the one resulting from the FSA, as observed
when monitoring the average PSNR values.

3. INTERFRAME ESTIMATION

3.1 Block motion characterisation

Before implementing FAD, we must define an a priori
statistical distribution characterising the motion vector. A
statistical study has been conducted using the full search
algorithm for each 16x16-block of a frame over 100 frames of
‘Missa’ and ‘Alkistis’, 130 frames of ‘Mother and Daughter’,
and 50 frames of ‘Carphone’ and ‘Foreman’. We keep the
general assumption of displacement x and y independence
despite that it is rarely true. Hence, in the following we will
consider only the developments for the x-component of the
motion vector. In a frame at time instant k, a block B(l),
(l=0,…,98) is characterised by its motion vector. This motion
vector is predicted from the previous frame using the block-
matching technique. Thus, the displacement x takes numerical
values within the range -7, ..., +7, at integer pixel accuracy.

On a frame to frame basis, the x-component (resp. y) of block
B(l) is rarely long-lasting stationary on one or more of the above
possible values. What more likely describes the dynamic
behaviour of x (resp. y) is jumps from one value to another with
very short-lasting stationarity on one or more particular values.

From now on, we consider the multi-model situations. A pair
(M, x) defines the state where the available models M, belong to
a finite set {md1,…,mdN}. A Gaussian probability distribution
for x(k) (resp. y(k)) yields a probability on each model M. Hence
at frame k+1, the state x(k+1) (resp. y(k+1)) has several
probability distributions that are conditional upon each model.
We define the state space model,
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where state noise w(k) and measurement noise v(k) are Gaussian
distributed with zero-mean and variance Q and R, respectively.
The coefficients (a,b), are taken to be a N-state Markov chain,
(a(k),b(k)). Due to the product a(k)x(k), the x-state distribution
loses its unimodal Gaussian feature. For our application we
consider tri-modal and five-modal approximations:

• Tri-modal Gaussian approximation

In this case we consider that x(k) (resp. y(k)) takes  values with
respect  to the available models: md1 ={x(k)<0}, md2={x(k)=0},
md3={x(k)>0} and the corresponding Markov coefficients
(a1,b1), (a2, b2), (a3, b3). These coefficients and the state
equation (8) without noise define the three possible (limit)
Gaussian distributions for x(k) (resp. y(k)) with mean and
variance: mi=bi/(1-ai) and σi

2=Q/(1-ai
2)  i=1,2,3.

• Five-modal Gaussian approximation

In the same manner the five possible models are: md1={x(k)<1},
md2={x(k)=-1}, md3={x(k)=0}, md4={x(k)=+1}, md5={x(k)>+1}
with the corresponding Markov coefficients (ai, bi), i=1,2,...,5
which define with the state equation (8) the five possible
Gaussian distributions for x(k) (resp. y(k)) with mean and
variance mi and σi

2 , (i=1,2,...,5).

According to our concept, we now define the density functions
relative to the non-linear state-space model (8) where the
coefficients (a(k),b(k)) are subject to random variations in time.
The distribution taken for (a(k),b(k)) is a measure such that
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Thus, (a(k),b(k)) randomly assumes the values, (ai,bi), with
respect to the transition probability
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i,l= 1,...,N.     (9)

These transition probabilities have been obtained through the
statistical study mentioned above.

We have to express the a priori densities for x (resp. y). A
Gaussian distribution is of exponential type. The logarithm of
its density function is linearly developed from the basis
functions: ϕ0(x)=1, ϕ1(x)=x, ϕ2(x)=x2, (resp. y).

We define the linear constraints l j, (j= 0,1,2) as the expected
values of the functions ϕj, (j= 0,1,2). Hence, these constraints
correspond to moments the Gaussian distribution. Thus, the
density for each possible model (i=1,...,N) is defined by

if(x)=exp(iλ0 + iλ1.x + iλ2.x2), (10)

where the Lagrange multipliers iλj, (i= 1,...,N; j=0,1,2) are
bijectively obtained from the linear constraints, i.e. the moments
of the Gaussian distribution.

Finally, the density function for the state (a(k),b(k),x(k)) can be
written as follows
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3.2 Non-linear filtering

In a frame k, for each block B(l), (l=0,…,98) the filtering by
approximated densities updates and predicts the conditional
density functions given the new measured motion z(k)=η,
resulting from the TSA.

The update uses the measurement equation (2) and the Bayesian
formula. That yields the Lagrange multipliers iλj, (j= 0,1,2) of
the density if(x) conditional upon the measured displacement

iλ0(k/k) = iλ0(k/k-1) + µ0 + µ1η + µ2η2

iλ1(k/k) = iλ1(k/k-1) - µ1 - 2µ2η
iλ2(k/k) = iλ2(k/k-1) +µ2

where µi, (i= 0,1,2) are Lagrange multipliers of the measurement
noise density. The normalisation introduces the external

coefficients i j
i f x dxα = ∫ ( ) , such that the updated probability

of the Markov coefficients (i.e. models) is defined by
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The displacement estimate x(k/k) used in the motion
compensation procedure, is hence evaluated through the
following expression in terms of the a posteriori probabilities
and means:
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Its numerical value is taken at half-pixel accuracy.

The prediction of the distribution for the block under
consideration in frame k+1 conditional upon the observation in
frame k, is now left. The probabilities of the coefficients
(a(k+1),b(k+1)) are predicted from the above ones and the
transition probabilities (9):

p k k p k k i l Nl
il
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The prediction of the densities if(x), (i=1,…N) uses the state
equation (3) to compute the linear constraints il j(k+1/k),

il0 =1

il1 = il0( ai mi(k/k) + bi )



il2 = il0(Q+ai
2(σi

2(k/k)+mi
2(k/k))+bi

2+2aibimi(k/k))

where Q is state noise variance. The values of constant
coefficients, ai and bi, depend on the model {md1,…,mdN}.

The predicted distribution which maximises the entropy under
the linear constraints is the distribution for which the Lagrange
multipliers of the density solve the non linear system: il j(k+1/k)=
E[iϕj(x(k+1/k))]. Thus, the Lagrange multipliers of the density
are defined in terms of mean and variance resulting from the
constraints as follows:
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Finally, the predicted distribution conditional upon the observed
motion through TSA is characterised by its exponential density
function with Lagrange multipliers predicted in accordance with
the FAD-concept.

3.3 Results

The filter has been implemented for 100 frames of ‘Missa’ and
‘Alkistis’, 130 frames of ‘Mother and Daughter’, and finally 50
frames of ‘Carphone’ and ‘Foreman’ sequences. In all cases, the
3-modal distribution is characterised by the means m1=-3.5,
m2=0, m3=3.5 and standard deviations σ1=σ3=1, 3σ2=0.5; for the
5-modal case we have m1=-4, m2=-1, m3=0, m4=1, m5=4 and
3σ1=3σ5=2.5, 3σ2=3σ3=3σ4=0.5. These values are valid for both
components x and y of the motion vector of each block within a
frame. The filter is initialised once and for all as the first frame
is loaded. It is observed that we do not need any refreshment or
motion detection as it is often the case when using the Kalman
filter.

The results presented in the Table 2 in terms of average PSNR
demonstrate the performance of the technique applied  to
interframe motion estimation.

Table 2. Comparative results on the average PSNR

AVERAGE PSNR dB
FSA TSA FILTERING BY APPROXIMATED DENSITIES

3-modal 5-modal 3-modal 5-modal 3-modal 5-modal
R=0.06 R=0.25 R=1

Missa Q=0.01 41.069 40.97141.373 41.380 41.177 41.273 40.977 40.979
Q=0.027 41.250 40.983 41.131 41.317 40.976 40.981

Mother & Q=0.01 36.139 36.046 36.132 36.143 36.097 36.100 36.066 36.063

   Daughter Q=0.027 36.104 36.063 36.072 36.091 36.055 36.054   
Alkistis Q=0.01 30.393 30.154 30.228 30.214 30.27730.432 30.246 30.280

Q=0.027 30.357 30.191 30.308 30.432 30.264 30.293

Carphone Q=0.01 33.793 33.539 33.78133.884 33.658 33.904 33.622 33.691
Q=0.027 33.939 33.571 33.656 33.957 33.580 33.658

Foreman Q=0.01 32.649 32.222 32.592 32.588 32.57032.656 32.559 32.537

Q=0.027 32.431 32.244 32.413 32.511 32.401 32.424

For different state and measurement noises the average PSNR is
always greater than the one resulting from the TSA. For each
sequence, we find one or more situations where the average
PSNR resulting from FAD is even greater than the one resulting
from the FSA.

4. CONCLUSION

For the intraframe motion estimation these are encouraging
results, in the sense that with the appropriate state model and a
priori  assumptions appropriate to a closer real motion vector
behaviour, we would be able through Kalman filtering to have a
greater PSNR than the full search for any frame of the sequence.

Regarding the applicability of the concept of filtering by
approximated densities in the area of motion estimation the
results are also very encouraging. It would be of interest to see if
a 7-modal approximation would give better results, and of
course what the results of this approach are in the case of
intraframe motion estimation.

Regarding the cost for using such an approach, it is observed
that in all cases, three step plus FAD is still faster than the full
search or three step plus Kalman.

5. REFERENCES
[1] Musmann H. G., Pirsch P. and Grallert H.-J., ‘Advances in

picture coding’, Proceedings IEEE, Vol. 73, No. 4, pp.
523-548, 1985.

[2] Aksu I., Ildiz F. and Burl J. B., ‘A comparison of the
performance of image motion operating on low signal to
noise ratio images’, 34th Midwest Symposium on Circuits
and Systems, Vol. 2, pp. 1124-1128, NY 1992.

[3] A. Murat Tekalp, ‘Digital video processing’, Prentice-Hall,
1995.

[4] Bashkaran V. and Konstantinides K., ‘Image and video
compression standards: algorithms and architectures’,
Kluwer Academic Publishers, 1995.

[5] Rao K. R. and Hwang J. J., ‘Techniques and standards for
image, video and audio Coding’, Prentice-Hall, 1996.

[6] Tziritas G., ‘Motion analysis for image sequence coding’,
Elsevier Science 1994.

[7] Namazi N. M., Penafiel P. and Fan C. M., ‘Nonuniform
image motion estimation using Kalman filtering’, IEEE
Transactions on Image Processing, Vol. 3, No. 5, pp. 678-
683, 1994.

[8] Burl J. B., ‘A reduced order extended Kalman filter for
sequential images containing a moving object’, IEEE
Transactions on Image Processing, Vol. 2, No. 3, pp. 285-
295, 1993.

[9] Kuo C.-M., Hsieh C.-H., Jou Y.-D., Lin H.-C., Lu P.-C.,
‘Motion estimation for video compression using Kalman
filtering’, IEEE Transactions on Broadcasting, Vol. 42,
No. 2, pp. 110-116, 1996

[10] Ruiz V. ‘Estimation et prédiction d’un système évoluant de
façon non-linéaire. Filtrage par densités approchées’, PhD-
thesis, University of Rouen, France, 19 March 1993.

[11] V. Ruiz, A. N. Skodras, ‘Motion estimation through
approximated densities’, 13th International Conference on
Digital Signal Processing, Santorini, Greece, Vol. 2, pp.
805-808, 1997.


