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ABSTRACT
For speech coders which fall within the class of waveform coders,
the reconstructed signal approaches the original with increasing bit
rate. In such coders, the distortion criterion generally operates on
the speech signal or a signal obtained by adaptive linear filtering of
the speech signal. To satisfy computational and delay constraints,
the distortion criterion must be reduced to a very simple approx-
imation of the auditory system. This drawback of conventional
approaches motivates a new speech coding paradigm in which the
coding is performed in a domain where the single-letter squared-
error criterion forms an accurate representation of perception. The
new paradigm requires a model of the auditory periphery which
is accurate, can be be inverted with relatively low computational
effort, and which represents the signal with relatively few param-
eters. In this paper we develop such a model of the auditory pe-
riphery and discuss its suitability for speech coding. Our results
indicate that the new paradigm in general and our auditory model
in particular form a promising basis for the coding of both speech
and audio at low bit rates.

1. INTRODUCTION

Assuming the standard squared error criterion, it is well-known
from source coding theory that scalar quantizers and vector quan-
tizers perform best in terms of distortion versus rate when the
scalars or signal blocks to be quantized are independent. As a re-
sult, many models which are used for waveform coding of speech
and audio signals, are essentially designed to represent the speech
signal in terms of one or more sample sequences in which the sam-
ples within a sequence as well as between the sequences are close
to independence according to some measure. Often, this process
takes the form of linear decorrelation by means of methods such as
linear prediction and the Karhunen-Lo`eve transform.

The linear-decorrelation strategy is easily motivated if the over-
all distortion criterion for the reconstructed speech signal can be
expressed as a sum of sample distortions, i.e. if the criterion is a
single-lettercriterion. Unfortunately, proper hearing models oper-
ating in the speech domain do not satisfy this requirement. Hearing-
based distortion criteria have significant co-dependencies between
samples, and thus also between adjacent signal blocks. As a result,
optimal performance cannot be obtained by quantizing the blocks
in their sequential time order. Particularly with the relative small
data blocks used in waveform coders such as CELP (which use
subframes from 2.5 to 10 ms in duration) this co-dependency of the
distortion reduces performance. This has been a major incentive to
use simple criteria with less co-dependency in such coders. An ex-
ample of the significant performance penalty associated therewith
is the accurate coding of the phase spectrum of the pitch cycle of
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a high-pitched speaker in a CELP coder; it is well-known from si-
nusoidal coding techniques that such an accurate phase description
for high pitched speech is irrelevant to a human listener.

In this paper, we propose a straightforward solution to the fore-
mentioned problem of criterion co-dependency of variables or vec-
tors which are to be quantized: we first transform the signal to a
representation where co-dependency of the distortion criterion on
the representation variables vanishes. In other words, we transform
the signal into a domain where a single-letter criterion, such as the
squared error criterion is an accurate representation of distortion.
Of course, a major constraint on the auditory model is that it must
be invertible, to allow the reconstruction of the speech signal at
the receiver. We use a physiologically-motivated hearing model to
obtain such a mapping.

2. AN INVERTIBLE AUDITORY MODEL

The purpose of our auditory model is to obtain a speech signal
representation which facilitates speech coding. Thus, we used the
following guidelines in the design of our auditory model:

1. The single-letter squared-error distortion criterion must be
an accurate description of distortion as perceived by the hu-
man auditory system.

2. A perceptually accurate inversion of the model must be pos-
sible at low computational complexity.

Auditory models used in speech and audio coding have usually
not been aimed at obtaining a single-letter criterion. However, par-
ticularly audio coding algorithms have carefully exploited know-
ledge about the human auditory system. It is common in audio
coders to have as a first processing stage a filterbank with a struc-
ture motivated by that of the human auditory periphery. Additional
auditory knowledge is exploited in the form of distortion criteria
which make the distortion co-dependent on the representation vari-
ables. Our approach differs from such audio coding algorithms in
that we aim to use a more sophisticated transform in combination
with a simple single-letter distortion criterion. Thus, our approach
should, in principle, have an advantage in the trade-off made be-
tween computational effort, delay, and accuracy.

Physiologically plausible invertible auditory model have been
used before for purposes other than speech or audio coding [1].
The aim of various invertible auditory models has been to under-
stand perception [2, 3, 4], to test the accuracy of the auditory model
[5, 6], and to enhance speech [4]. The inversion process for the
more recent models is iterative in nature [3, 4, 6].

Some of the inversion procedures are based on the framework
of projections onto convex sets [7], where the constraints on the re-
constructed signal are specified in the form of convex sets. Iterative
projections onto these sets converge to a point on the intersection



of the sets. For coding purposes, the method of convex projections
suffers from several disadvantages:i) the iterative nature of the
algorithm leads to a high computational load, andii ) if not all con-
straints can be formulated as convex sets, then convergence cannot
be guaranteed. We should also mention the iterative inversion pro-
cedures developed for spectrograms [8], which are closely related
to the cochleagram auditory representation. These inversion meth-
ods are guaranteed to converge to a locally optimal solution, but
again require a high computational effort.

2.1. The Auditory Model
Our source coding system is outlined in figure 1. The early pro-
cessing stages are similar to most other physiologically-motivated
auditory models. The first analysis stage is a filterbank which sim-
ulates the motion of the basilar membrane. We use the well-known
gamma-tone filterbank [9] for this purpose. A 20-channel imple-
mentation of this filterbank is shown in figure 2. The filterbank
is followed by a half-wave rectifier and a power-law compression,
simulating the behavior of the inner hair cell. The input,x(n), and
output,y(n) of the power-law compression operator are related by

y(n) = x(n)b: (1)

In our work we useb = 0:4.
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Figure 1: The proposed coding system.

In the processing stage following the power-law compression,
we want to simplify the data representation to facilitate coding,
without removing information essential to perceptually accurate
reconstruction. In particular, it is important that the model pre-
serves information about the local cyclostationarity of the signal,
i.e. that the model preserves the differences between voiced speech
(nearly periodic) sounds and unvoiced (wide band) sounds. In-
formation about this fine structure of the speech is lost if time-
averaging is applied to the processed filterbank outputs, as is com-
mon to many auditory models (e.g. [6, 10]). Time-averaging is
useful for speech recognition purposes [6, 11], but leads to low
reconstruction quality upon inversion [6].
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Figure 2: Transfer functions for our 20-channel gamma-tone filter-
bank. The reconstruction transfer function is also shown, prior to
equalization.

In our model, the power-law compressor is followed by an
adaptive sampling mechanism simulating the firing behavior of au-
ditory neurons. Our model provides the neurons with a physiolog-
ically plausible behavior and simplifies the data structure. Each
neuron has astatewhich decays exponentially with a characteris-
tic decay time� and which is reset when it fires. The reset level is
dependent on the input level during firing. The firing probability
of a neuron per unit time is a monotonically increasing function of
the difference between the neuron input and its state.

The functionality of the neuron model can be explained with
a sine-wave input with a periodp << � . Each channel of the
filterbank is associated with an ensemble of neurons. The behav-
ior of our neuron model leads to a high rate of neuron firings at
the peak of the input sine wave (ignoring processing delays) and
low firing rates elsewhere. In other words, clusters of high firing
rates aresynchronizedwith the signal period. This synchronicity
of neuron firings with the input signal is present even for neurons
corresponding to filters in the auditory filterbank which have their
best frequency (frequency location of largest filter gain) relatively
far from the sine wave frequency. The probabilistic nature of the
firing of an individual neuron means that the firing of the ensemble
has a certain time resolution. Since synchronization is known to
occur until about 4000-5000 Hz, it is reasonable to postulate the
time localization of the firing clusters of the neuron ensemble to be
of the order of 0.2 ms.

To make the representation of the half-wave rectified signal
complete, i.e. to make reconstruction possible, we need to pre-
serve not only the location of the peaks, but also their amplitude.
In terms of our neuron model, this represents the firing rate, i.e.
the number of neurons of the ensemble which fires at the peak
location. Thus, our neuron ensembles essentially sample the com-
pressed and half-wave rectified filter outputs at the signal peaks. In
the following, we will refer to the firing clusters asfiring pulses,
which have both atime locationandamplitude.

The nature of the neuron firing for the lower frequency bands
allows a simple peak-picking implementation for an 8 kHz sam-
pling rate. The peak-picking operator output,w(n), is given by

w(n) =

�
y(n); y(n) > y(n� 1) ^ y(n) > y(n+ 1)
0; otherwise

(2)

The peak-picking procedure resembles the pulse-ribbon model of
Patterson [12]. However, in contrast to this earlier model, we pre-
serve an amplitude in addition to a firing cluster location.



Next, we consider the behavior of our model for signal char-
acteristics common to speech. We start with the harmonic set of
sine waves, which mimics voiced speech. For each hair cell, the
firing cluster occurs when the sinusoid nearest in frequency to the
peak of the corresponding filter is at its maximum. Thus, the neu-
ron firings are synchronous (phase-locked) with the pitch period
or submultiples of the pitch period. The neuron firings are aligned
across the frequency channels, except for the delay of the filters
of the gamma-tone filterbank, which decreases with increasing fre-
quency. This is shown in figure 3. For the case of wide-band noise,
the neuron firings are nearly regularly spaced in time, a result of
the band-limitation of the channel. However, the irregularity of
these pulse spacings is very clear upon autocorrelation or Fourier
transform of the pulse train of firing pulses for a channel.

It is natural to ask if we achieved the goal of a single-point
distortion criterion. Assuming that the auditory model used is cor-
rect (and not trivial), our procedure does reach this goal whereas
conventional coders do not. Our confidence in the accuracy of our
model is based on published experimental results for the compo-
nents we use (e.g., [9, 12]) and for related models as well as the
experimental results described in section 4.
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Figure 3: The perceptual domain (50 channels) for the sound [I] in
“there is”, spoken by a male. Three pitch periods are shown with
the pulse alignment and formant structure are clearly visible.

2.2. The Inversion Mechanism
The first step in our inversion procedure is a power-law expansion
on the firing pulses. We now have, for each channel, the positive
peaks of the original signal. Each channel signal consists of mostly
zeros and the power-law expanded firing pulses. The channel sig-
nals approximate the situation where a signal is downsampled and
then upsampled by means of inserting zeros. This insertion of the
zeros leads to aliasing which can be removed by means of band-
pass filtering. This reasoning immediately suggests that bandpass
filtering each (expanded) train of firing pulse should lead to a good
approximation of the outputs of the analysis filter bank. Thus, ap-
plication of the synthesis filterbank to the train of firing pulses and
adding these signals should lead to a good reconstruction at low
computational complexity. This is confirmed experimentally in
section 4. We stress that thepulse-train character of our auditory
representation is fundamental to the fast reconstruction process,
allowing reconstruction without resorting to iterative methods.

For the model inversion to work, we must include proper nor-
malization such that the the signal power in each channel is correct.
Thus, prior to filtering, we compensate fori) the firing rate andii )
the finite sampling rate of the channel signals. The analysis filter-
bank outputs resemble sinusoids. If the sinusoids have a period of

P , then the peak-picking procedure reduces the amplitude, when
observed only within the band corresponding to the channel by a
factorP . The average per-cycle maximum amplitude of a sampled
sinusoid,�, for the case of a unity amplitude sine wave and a unity
sampling period is

� =

Z
1=2

�1=2

cos(
2�t

P
)dt =

P

�
sin(

�

P
): (3)

Thus, compensating for the finite sampling rate and the subsam-
pling effect resulting from the peak picking gives an overall ampli-
tude correction factor of�= sin(�=P ).

The definition of the inverse filterbank is not entirely straight-
forward since the analysis filterbank is not orthogonal. LetK be
the number of channels, andHk(z), k = 1; � � � ; K the transfer
function of the individual analysis filters. Using a synthesis filter-
bank with the transfer function

Gk(z) =
H�

k (z)P
i
Hk(z)H�

k(z)
(4)

for the individual filters will lead to exact reconstruction. Thus,
for the case that

P
i
Hk(z)H

�

k(z) = 1, the synthesis filterbank
is just the analysis filterbank with time-reversed impulse response.
(A time delay is needed to make the filterbank causal.) In the gen-
eral case, accurate signal reconstruction can be obtained with a
linear-phase equalization filter which accounts for the denomina-
tor of equation 4. Synthesis filter banks without equalization are
commonly used [4]. We found that for 20 channels this results in a
2 dB ripple (shown in figure 2). Such a ripple is almost inaudible
and decreases with increasing number of channels.

3. CODING ASPECTS

Our perceptual representation is a relatively sparse representation.
However, it has more pulses than the original speech signal has
samples. This increase in data is associated with a strong interde-
pendency of the pulse amplitudes, and the increased effectiveness
of a single-letter distortion criterion. To facilitate quantization with
scalar or low-dimensional vector quantizers, the strong interdepen-
dency of the pulses, i.e. the redundancy, in the perceptual domain
must be reduced first. A strong constraint applies on this redun-
dancy reduction operator: it should not change the single-letter
character of the distortion criterion.

A significant part of the redundancy in our perceptual repre-
sentation is the within-channel redundancy. The information re-
siding in each channel, i.e. in each firing pulse train can be sep-
arated into two aspectsi) the amplitude of the pulses (represent-
ing the modulation amplitude of the channel) andii ) the spacing
of the pulses which represents the spectral fine-structure (tone-
like or wideband) in the channel. The Karhunen-Lo`eve transform
and closed-loop prediction in combination with scalar quantization
preserve the single-letter distortion criterion and generally reduce
redundancy. The discrete Fourier transform and particularly the
discrete-cosine transform are often used as satisfactory approxi-
mations to the Karhunen-Lo`eve transform.

The Fourier transform on each pulse train channel results in a
two-dimensional representation (channel index versus frequency)
which displays themodulation spectrum[13]. This is related to
the syllabic articulation rate at low modulation frequencies and to
the level of signal periodicity at higher modulation frequencies.
Further decorrelation can be obtained with transformations along
the channel axis. All these transformations preserve the squared-
error criterion.



4. EXPERIMENTAL RESULTS

In this section we describe the reconstruction quality of our audi-
tory model with and without quantization noise. For simple anal-
ysis/synthesis, we found that the quality of the reconstructed sig-
nal increases with increasing number of channels. However, at
about 20 channels the perceived quality of the reconstruction has
converged to that of the original signal for both speech and au-
dio signals. The only audible difference is that some of the low
frequencies are missing, which is a direct result of our choice of
the filterbank configuration (see figure 2). A comparison of wave-
forms is shown in figure 4. Reconstruction from the pulse-train
representation obtained with the peak-picking procedure results in
a reconstructed signal with a segmental signal-to-noise ratio of 20
to 25 dB.
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Figure 4: The reconstruction accuracy of the auditory model.

It is useful to examine the overall firing pulse rate prior to the
quantization experiment. For both speech and audio signals, our
experiments show that the average pulse rate of each of the chan-
nels approximates its best frequency. For the 20-channel case and
for a real speech signal, the first channel has a pulse rate of about
200 Hz and the 20th channel has a pulse rate of about 3300 Hz.
The average pulse rate is about 1300 Hz. Compared to the sampled
speech signal, the perceptual-domain representation has about 3.2
times more pulses than there are samples in the original signal.

It seems reasonable to assume that the human auditory system
is tolerant of internally generated noise, particularly given the ran-
dom nature of neuron firings. This implies that an accurate model
of the auditory system should be robust against noise introduced
in any of the auditory representations. To check the robustness of
the firing-pulse representation, we applied a simple quantization
scheme to the pulse amplitudes. We estimate the maximum pulse
amplitude in each channel once per 20 ms. Using this maximum
value, and the fact that the signal is positive, a scalar quantizer is
used to quantize the pulse amplitudes in the 20 ms frame. Sur-
prisingly, we found that the reconstructed signal was essentially
transparent for both speech and audio when we quantized the firing
pulse amplitudes with only 1 bit per pulse (we used amplitudes 0.4
and 0.8 of the local maximum). However, using zero-bit quanti-
zation (fixed pulse amplitude within each channel for each frame)
results in clearly audible distortion. We conclude that the firing-
pulse representation is robust to amplitude modifications.

5. CONCLUSION

We have argued that it is deleterious for coding efficiency to per-
form quantization of parameters or parameter vectors independently
when their distortion criteria are co-dependent. To avoid this prob-
lem, the co-dependency of the distortion must be removed first by

transforming the signal into a perceptual domain.
While the distortion co-dependency is removed by a trans-

formation into the perceptual domain, the resulting representation
generally has a significant amount of redundancy. Much of this
redundancy can be removed by means of linear decorrelation tech-
niques such as Fourier transforms which preserve the single-letter
distortion criterion. In future work, we plan to code the signal after
decorrelation.

We have shown that it is possible to construct physiologically
motivated auditory models which allow very fast and perceptually
accurate inversion. The robustness of the quality of the recon-
structed acoustic signal under distortion in the perceptual domain
shows that our model is accurate. The computational speed of the
inversion procedure and the sparseness of its firing pulse repre-
sentation give our model a significant advantage over other invert-
ible auditory models (which use iterative inversion procedures) for
speech and audio coding applications.
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