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Abstract
A new pattern matching method, Partly Hidden

Markov Model, is proposed and applied to speech recog-
nition.

Hidden Markov Model, which is widely used for
speech recognition, can deal with only piecewise sta-
tionary stochastic process. We solved this problem by
introducing the modi�ed second order Markov Model,
in which the �rst state is hidden and the second one
is observable. In this model, not only the feature pa-
rameter observations but also the state transitions are
dependent on the previous feature observation. There-
fore, even the compricated transient can be modeled
precisely.

Some simulational experiments showed the high po-
tential of the proposed model. As the results of word
recognition test, the error rate was reduced by 39%
compared with normal HMM.

1 Introduction
In the HMM, the output probability of feature vec-

tors in each state is unique. That means HMM basi-
cally neglect the dynamic features and deal with only
piecewise stationary process. Since the dynamic fea-
tures of speech must play important role in the speech
hearing, it is desired for the speech recognizers to deal
with them appropriately. If the dynamical features
of the speech patterns are modeled more precisely, it
must contribute to improve the reliabilities of likeli-
hood and improve the performance. It may be useful
for the word spotting or pruning in continuous speech
recognition also.

Aiming at this point, several approach to improve
HMM have been tried. Deng[1] introduced trajec-
tory models in the HMM. Mari[2] and Ariki[3] pro-
posed 2nd order HMM. Wellekens[4], Takahashi[5]
and Digalakis[6] introduced inter-frame dependence in
HMM.

In this paper, we propose another model for time
series pattern matching, that is modi�ed 2nd order
Markov model. The �rst state of this model is hid-
den and the second one is observable. For this struc-
ture, not only the feature parameter observations but
also the state transitions are dependent on the previ-
ous feature observation. Thus, it is possible to deal
with transient process rather than piecewise station-

ary. We call this model Partly Hidden Markov Model
(PHMM).

In the next section, PHMM is introduced in con-
trast to HMM. In this section, we also describe some
important smoothing technique to improve the per-
formance. In section 3 some results of simulation ex-
periments are described to explain the merit of this
model. Finally in section 4, the experimental results
of speech recognition are shown.

2 Partly Hidden Markov Model
2.1 Markov Model and Hidden Markov

Model
In general, the output probability of feature vector

xt, Pt(xt), is given by the conditional probability of
the all past observation x0x1 � � �xt�1

Pt(xt) = Pr(xtjx0x1 � � �xt�1): (1)

In the Markov model, the number of the sequence
which is used for the condition is truncated by �xed
number K.

Pt(xt) = Pr(xtjxt�Kxt�K+1 � � �xt�1): (2)

And, certain state Si is uniquely given to the sequence
of xt�Kxt�K+1 � � �xt�1. Then, the former equation
become

Pt(xt) = Pr(xtjSi): (3)

In the Hidden Markov Model, the same representa-
tion is adopted for the output probability. However,
in this case, the relation between the output sequence
and state is not unique but probabilistic.

2.2 PHMM
In the proposed model, the output probability

Pr(xtjxt�Kxt�K+1 � � �xt�1) is represented by second
order model,

Pr(xtjxt�Kxt�K+1 � � �xt�1) = Pr(xtjS
f
i ; S

s
j ): (4)

Here, state S
f
i is given to the sequence of

xt�Kxt�K+1 � � �xt�2 and state Ss
j is given to the out-

out of xt�1. We call S
f
i f-state (�rst state). And

we call Ss
j s-state (second state). If both of these

mappings are unique, this model is equivalent to the



Markov Model. If both of them are probabilistic, it is
equivalent to the Hidden Markov Model.

In the proposed model, mapping from the sequence
of xt�Kxt�K+1 � � �xt�2 to state S

f
i is probabilistic and

the mapping from the output xt�1 to the state Ss
j is

unique. We call this model \Partly Hidden Markov
Model (PHMM)." Since the half of the conditional
part of the output probability is shared in many vari-
eties of output sequences, the number of the states Sf

i
can be reduced and the complexity of the model can
also be reduced. Since the output probability of xt is
conditioned by state Ss

j (that means it is conditioned
by xt�1), the model can deal with more complicated
process than piecewise stationary.

In the proposed model, the probability that the
output sequence x1x2 � � �xT (s-state transition is
x0x1x2 � � �xT�1) comes from the model with the f-
state transition s1s2 � � � sT is de�ned by following
equation.

Ps = Pr(x1x2 � � �xT s
f
1s

f
2 � � � sfT s

s
1s

s
2 � � � ssT ) (5)

Since ss1s
s
2 � � � ssT = x0x1 � � �xT�1,

Ps = Pr(x1x2 � � �xT s
f
1s

f
2 � � � sfTx0)

= Pr(sf1s
s
1)Pr(x1js

f
1 ; s

s
1)

�

T�1Y

t=1

Pr(sft+1js
f
t s

s
t)Pr(xt+1js

f
t+1s

s
t+1)

= Pr(sf1 ; x0)Pr(x1js
f
1x0)

�

T�1Y

t=1

Pr(sft+1js
f
t xt�1)Pr(xt+1js

f
t+1xt) (6)

Also, since,

Pr(sft+1 j s
f
t xt�1) =

Pr(sft+1js
f
t )Pr(xt�1js

f
t+1s

f
t )

Pr(xt�1js
f
t )

(7)

Pr(xt+1js
f
t+1xt) =

Pr(xt+1xtjs
f
t+1)

Pr(xtjs
f
t+1)

(8)

Eq. (6) becomes,

Ps = Pr(sf1 ; x0)Pr(x1js
f
1 ; x0)

�

T�1Y

t=1

Pr(sft+1js
f
t )Pr(xt�1js

f
t+1s

f
t )

Pr(xt�1js
f
t )

�
Pr(xt+1xtjs

f
t+1)

Pr(xtjs
f
t+1)

: (9)

Pr(x1x2 � � �xT ) can be obtained by summing up
Eq.(9) for all possible combination of F-state transi-

tion s
f
1s

f
2 � � � sfT .

From above discussion, it is found that PHMM can
be expressed by following 5 parameters.

aij : the probability that the next f-state is Sf
j in case

that the current f-state is Sf
i .

bi(x) : the probability that the current S-state is x in

case that the current f-state is Sf
i .

cij(y) : the probability that the current s-state (last

output) is y in case that the current f-state is Sf
i

and the next f-state is Sf
j .

di(x; y) : the probability that the current output is x
and the current s-state (last output) is y in case

that the current f-state is Sf
i .

ei(y) : the probability that the initial s-state is y and

the initial f-state is Sf
i .

The training algorithm to get above PHMM param-
eters can be derived through EM algorithm or segmen-
tal K-means algorithm like HMM training algorithm.
The forward algorithm and viterbi algorithm to get
likelihood for PHMM can be derived by similar way
to the HMM.

Figure 1 shows the characteristics of PHMM com-
pared to the HMM. Arrows in the �gure show the
dependency in the observation sequence and state se-
quence. In HMM, state transition is dependent only
on the previous state and observation is dependent
only on current state. While, in PHMM, state is de-
�ned by the previous f-state and previous observation,
and observation is dependent on current f-state and
previous observation (current s-state).

This e�ect is easily found in the state transition.
In HMM, the probability moving to next state is con-
stant in a state. While, in PHMM, the state transition
probability is changing according to the previous ob-
servation even in a state (See Fig.2).

ob
se

rv
at

io
n

st
at

e

t 0 1 2

(a) HMM

st
at

e

t 0 1 2

ob
se

rv
at

io
n

(b) PHMM
Fig.1 Dependency of the observation sequence and the state

transition sequence. Arrows in the �gures show the
dependency.
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Fig.2 An example of temporal change of the transition

probabilities.



2.3 Smoothing of observation probabili-
ties

PHMM used higher order statistics than HMM.
Higher order statistics is sometimes less reliable. In
that case, smoothing with lower order statistics is ef-
fective. For example, it is well known that the trigram
language model smoothed with bigram perform better
thatn simple trigram.

Therefore, we adopted smoothing in PHMM.
Namely, we use

Pr(xt+1xtjs
f
t+1)

�

Pr(xtjs
f
t+1)

�
� Pr(xt+1js

f
t+1)

1��
� (10)

instead of
Pr(xt+1xtjs

f
t+1)

Pr(xtjs
f
t+1)

(11)

in Eq. (9)

3 Simulation
3.1 Discrimination of transient di�erence

In order to show the e�ectiveness of PHMM, two
simulation experiments are performed.

In the �rst simulation experiment, we examine the
ability of PHMM for the discrimination of two signals
whose target values are the same but transients are
di�erent, one transient is piecewise stationary and the
other is with gentle slope.

We select rectangler signal as the the piecewise sta-
tionary signal and cosine signal as gentle slope signal.
Signals are slightly uctuated by random sequence.

We examined the average likelihood value of each
signal for each model.

Figure 3 shows the results. Horizontal axis denotes
the experimental condition of the state number. Every
three lines correspond to the same state number con-
dition. Left most line of every three lines denotes the
results of PHMM, middle one is HMM without delta
parameters and right one is HMM with delta param-
eters. The top points of each line denotes the average
likelihood of signal observation when we used the right
signal for the model (test category is the same as train-
ing category). The bottom points of the lines denote
the likelihood when we used the wrong signal (the test
category is di�erent from training category). The top
points is higher the better and bottom point is lower
the better. So, the long line shows the good ability of
discrimination.

From these �gures, it was shown that the piecewise
stationary signals are well treated by all models, HMM
and PHMM, however, cosine signals which have gen-
tle slope can not be treated by HMM without delta
parameter. Using HMM with delta, the discrimina-
tion ability is improved. However, the top position
of HMM with delta is approximately 20% lower than
that of PHMM. This results shows the high reliabil-
ity of PHMM based likelihood values. The ability of
PHMM is the best.

3.2 Discrimination of target di�erence
from transient

In the second simulation experiment, we examine
the ability of PHMM for the discrimination of two
groups of signals with di�erent targets using transient
data.

(a) Rectangle trained models.

(b) Cosine trained models.
Fig.3 Average likelihood values in 1st simulation experiment.
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(b) Category 2
Fig.4 Examples of signals used for 2nd simulation experiment.



All signals in the two groups have the same dynamics
of 2nd order critical damping. Signals in a group have
wide variation of initial values but the same target.
Targets of the groups are di�erent each other (Tar-
get of the category 1 is 100 and that of category 2
is 50). These signals also uctuated by random se-
quence. Figure 4 show the examples of the signals we
used in this experiment.

Figure 5 shows the results. From this �gure, it was
found that the PHMM can discriminate the target dif-
ference from transient data in spite of wide variation
of initial values. This results imply that the context
independent models might perform well in PHMM-
base recognizer, while context dependent models are
indispensable in HMM-based one.

(a) Category 1 (target 100) trained model

(b) Category 2 (target 50) trained model
Fig.5 Average likelihood values in 2nd simulation experiment.

4 Speech Recognition Experiment
To evaluate the e�ectiveness of PHMM for speech

recognition, word recognition experiment was done.
The task is to discriminate ATR 216 phonetically

balanced word set uttered by 7 male speakers.
The word models are constructed by concatenat-

ing mono-phone models trained with 10000 sentences
from JNAS speech database[7]. Distribution function
of each state in models is represented by a normal dis-
tribution with full covariance. Since the JNAS has no
phonetic labels and we have not developed the train-
ing algorithm of PHMM parameters from label-less
database yet, we automatically labeled JNAS data us-
ing HMM and used them for the training. This is

rather unfavorable process for PHMM because opti-
mal segment boundary for HMM is not always opti-
mal for PHMM. The microphone used for test data is
di�erent from that of training data. However, we did
not used particular process to compensate them.

Figure 6 show the results of experiments. Horizon-
tal axis denotes the smoothing parameter � in Eq.
(10). The result in case of � = 0 corresponds to
HMM. The result in case of � = 1 corresponds to
pure PHMM. From this �gure, it is found that the
smoothing is very important to improve performance.
PHMM with smoothing factor 0.8 give the best score
93.4%. This is 39% error rate reduction.
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Fig.6 Results of word recognition as a function of smoothing
parameter �.

5 Conclusion
A new stochastic model named PHMM is proposed

and it is applied to speech recognition. As compared
with HMM, PHMM improved error rate by 39%.

Since PHMM realize high reliability of likelihood
values, it is expected that it suit for word spotting and
pruning. Simulation experiment imply the possibility
of PHMM in context independent modeling. In the
next stage, we'd like to evaluate the e�ectiveness of
PHMM in these points of view.
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