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ABSTRACT

This paper describes the first steps toward a multiwavelet system
that may retain the advantages of a traditional multiwavelet system
while alleviating some of its disadvantages. We attempt to achieve
this through the introduction of a novel property — the disjoint
support of the multiscaling functions. We derive the conditions on
the matrix filter coefficients that guarantee the disjoint support of
multiscaling functions. Our preliminary results demonstrate that
multiwavelet systems with this property may be arbitrarily com-
plex. We then establish the existence of multiwavelet systems with
two scaling functions and approximation order = 2.

1. INTRODUCTION

Wavelet systems are powerful because they may be designed to
possess certain useful properties. Unfortunately, a given wavelet
system may not possess all such useful properties simultaneously
and we may be forced to choose a subset of the desired properties
for a particular application [1]. On the other hand, multiwavelets
have attracted considerable attention due to their ability to simul-
taneously offer a larger subset of useful properties than is possible
with wavelet systems. In particular, multiwavelet systems can si-
multaneously offer real-valued basis functions with compact sup-
port, specified approximation order, orthogonality and symmetry
[2, 3, 4, 5, 6, 7, 8, 9]. Two disadvantages that accompany multi-
wavelet systems are the increased computational costs due to the
use of multifilters and the urgent need to prefilter data due to spec-
tral imbalance in the multifilter banks [10, 11, 12, 13]. Lebrun et
al. [14] and Selesnick [15] circumvent the prefiltering problem by
designing “balanced” multiwavelets.

Our motivation for the study of multiwavelet systems whose
multiscaling functions have disjoint support (MSMFDS’s) is based
on the conjecture that, in a sense, MSMFDS’s may be viewed as
being “inbetween” traditional wavelet systems (TWS’s) and tradi-
tional multiwavelet systems (TMS’s). We arrived at this conjecture
on observing that MSMFDS’s are less restrictive than TWS’s since
they employ more than one basis function, but they are more re-
strictive than TMS’s since the disjoint support property imposes a
sparse structure on the matrix filter coefficients of the MSMFDS.
This status indicates that MSMFDS’s may be designed to over-
come some of the disadvantages of TMS’s while retaining some of
their advantages.

This work was supported by DARPA, and Texas Instruments.
Email: felixf@rice.edu, csb@rice.edu
Web: http://www.dsp.rice.edu

In order to characterize MSMFDS’s, we shall start with a TMS,
and then determine the conditions to be imposed on its matrix filter
coefficients in order to force the support sets of its scaling func-
tions to be disjoint. Thus we arrive at a MSMFDS. We shall then
provide an example to demonstrate the existence of an MSMFDS
with approximation order =2.

2. PRELIMINARIES

First, we formally define the support set of a measurable function
F from the realR to the complexC as done by So et al. in [16].
A point t 2 R is called asupport pointof F if the measure of the
intersectionfx : F (x) 6= 0g \ (t � �; t + �) is not zero for any
� > 0. Then the support set ofF , denoted by supp(F ) is defined
as the convex hull of the set of support points ofF .

In a TMS, translates of a scaling vector
�(t) = [�1(t); : : : ; �r(t)]

T are used to span a subspace ofL2(R),
wherer is a positive integer andT refers to a matrix transpose op-
erator.�1(t); : : : ; �r(t) are the component multiscaling functions.

The matrix dilation equation

�(t) =
p
2
X
n

Cn�(2t� n) (1)

whereCn arer � r matrices referred to as “matrix filter coeffi-
cients”. The matrix dilation equation (1) may be solved in order
to obtain the scaling function vector,�(t). We shall view the se-
quenceCn as anr-input r-output matrix scaling filter for which
we adopt the following notation:

[Cn]i;j = hi(nr + j); (2)

where[Cn]i;j is the(i; j)th entry of the matrixCn. Let us define

P (z) =
NX
k=0

Ckz
k (3)

to be thematrix symbolassociated with the matrix scaling coeffi-
cients,Ck. P (z) is anr � r matrix with polynomial entries. Let
[P (z)]i;j denote the(i; j)th polynomial entry ofP (z) andh(i; j)
(resp.,l(i; j)) be the highest (resp., lowest) degree of[P (z)]i;j .
By convention, the highest (resp., lowest) degree of the zero poly-
nomial is�1 (resp.,1). Also, kP (i; j)k will refer to the length
of [P (z)]i;j . Evidently,kP (i; j)k = h(i; j)� l(i; j).

3. THE DISJOINT SUPPORT CRITERION

Given a scaling vector,�(t) = [�1(t); : : : ; �r(t)]
T , the disjoint

support property of the multiscaling functions requires

supp(�1(t)) \ ::: \ supp(�r(t)) = ;: (4)



We shall obtain the disjoint support property by requiring the sup-
port sets of the scaling functions to be determined by

supp(�i) = [Ni; Ni+1]; 1 � i � r; (5)

whereNi 2 R; 1 � i � r + 1.
In order to derive the disjoint support criterion in terms of the

matrix filter coefficients, we first relate the degrees of the polyno-
mials in the matrix symbolP (z) as done by So et al. in [16].
For each1 � i � r, using the dilation equation (1), we get

�i(t) =
NX
k=0

rX
j=1

[Ck]i;j�j(2t� k)

=

rX
j=1

NX
k=0

[Ck]i;j�j(2t� k)

=
rX

j=1

h(i;j)X
k=l(i;j)

[Ck]i;j�j(2t� k):

So et al [16] have shown that:

supp(�i(t)) � conv

0
@[r

j=1supp

0
@ h(i;j)X

k=l(i;j)

[Ck]i;j�j(2t� k)

1
A
1
A ;

where “conv” is the convex hull of a set. Enforcing the disjoint
supports of the scaling functions in equation (5) gives us

[Ni; Ni+1] � conv

�
[r
j=1

�
1

2
(Nj + l(i; j));

1

2
(Nj+1 + h(i; j))

��
:

This enables us to deduce that the disjoint support criterion phrased
indirectly in terms of the matrix filter coefficients is

2Ni = min
1�j�r

fNj + l(i; j)g (6)

2Ni+1 = max
1�j�r

fNj+1 + h(i; j)g : (7)

4. OBTAINING DISJOINT MULTISCALING FUNCTIONS

The disjoint support criterion in (6, 7) does not explicitly divulge
the matrix filter coefficients that are associated with disjoint mul-
tiscaling functions – it merely characterizes the highest and lowest
degrees of polynomials in the matrix symbolP (z). We also em-
phasize that the matrix filter coefficients satisfying the disjoint sup-
port criterion are not unique, and we need additional constraints to
arrive at the matrix filter coefficients satisfying the disjoint support
criterion. Additional constraints are readily available in the guise
of equations that need to be satisfied for the multiwavelets to enjoy
other desirable properties such as a specified approximation order
and/or orthogonality.

Unfortunately, the format of the disjoint support criterion (6,
7) renders it difficult to incorporate it into a system of equations
whose solution yields the desired matrix filter coefficients. In-
stead, we may use a heuristic rule to determine the locations of
the non-zero entries in the matrix filter coefficients. The system of
equations associated with the other desired properties of the mul-
tiwavelet system may then be solved using the known structure of
the matrix filter coefficients.

TMS’s have many evenly distributed non-zero entries in the
matrix filter coefficients. Thus, a good choice for the heuristic

rule would be to minimize the number of zero matrix filter coeffi-
cient entries by maximizing the lengths of the constituent polyno-
mials in the matrix symbolP (z) and minimizing the variance of
the lengths of each of the constituent polynomials (to evenly dis-
tribute the non-zero entries). This particular heuristic rule may be
expressed mathematically as

maximize

0
BBBB@
X
i

X
j

kP (i; j)k
| {z }

sum

1
CCCCA ; (8)

minimize

0
BBBBB@
X
i

X
j

�
kP (i; j)k � sum

r2

�2
| {z }

variance

1
CCCCCA : (9)

We illustrate the application of this heuristic rule to a system with
r = 2 in order to obtain the structure of the matrix filter coeffi-
cients satisfying the disjoint support criterion (6, 7).

The disjoint support criterion forr = 2 with N1 = 0 is

0 = min fl(1; 1); N2 + l(1; 2)g (10)

2N2 = max fN2 + h(1; 1); N3 + h(1; 2)g (11)

2N2 = min fl(2; 1); N2 + l(2; 2)g (12)

2N3 = max fN2 + h(2; 1); N3 + h(2; 2)g (13)

It is possible to use an optimization theoretic approach to arrive
at the optimal solution to the disjoint support criterion using the
heuristic rule. However, since the heuristic is not guaranteed to
give an optimal solution, we will be content with a sub-optimal
solution obtained in two steps. First, we choosel(i; j) as small
as possible andh(i; j) as large as possible, to satisfy the disjoint
support criterion (10,11, 12,13). This gives us

l(1; 1) = 0 (14)

l(1; 2) = 0 (15)

h(1; 1) = N2 (16)

h(1; 2) = 2N2 �N3 (17)

l(2; 1) = 2N2 (18)

h(2; 1) = 2N3 �N2 (19)

l(2; 2) = N2 (20)

h(2; 2) = N3: (21)

The associated lengths of the constituent polynomials in the matrix
symbolP (z) are

kP (1; 1)k = N2 (22)

kP (1; 2)k = 2N2 �N3 (23)

kP (2; 1)k = 2N3 � 3N2 (24)

kP (2; 2)k = N3 �N2: (25)

The second step in the heuristic process involves keepingN2 con-
stant and determining the value ofN3 that minimizes the variance
in (9). The minimizer,N3 is easily determined to be

N3 =
17N2

10
(26)



ChoosingN2 = 10 and the optimalN3 from (26), equations (14–
21) enable us to determine the forms of the polynomial constituents
of the matrix symbolP (z) as

[P (z)]1;1 =

10X
k=0

h1(2k)z
k (27)

[P (z)]1;2 =
3X

k=0

h1(2k + 1)zk (28)

[P (z)]2;1 =

24X
k=20

h2(2k)z
k (29)

[P (z)]2;2 =
17X

k=10

h2(2k + 1)zk: (30)

This enables us to determine the structure of the matrix filter coef-
ficients to be

Cn =

�
h1(2n) h1(2n+ 1)

0 0

�
; 0 � n � 3 (31)

=

�
h1(2n) 0

0 0

�
; 4 � n � 9 (32)

=

�
h1(2n) 0

0 h2(2n+ 1)

�
; n = 10 (33)

=

�
0 0
0 h2(2n+ 1)

�
; 11 � n � 17 (34)

=

�
0 0
0 0

�
; 18 � n � 19 (35)

=

�
0 0

h2(2n) 0

�
; 20 � n � 24: (36)

It is evident from the structure of the matrix coefficients that the
disjoint support property imposes sparsity on the matrix coeffi-
cients. We also point out that sinceN2 can be made arbitrarily
large, we can construct arbitrarily long sequences of matrix coeffi-
cients. This is worthy of mention because it demonstrates that the
disjoint support property does not restrict the length of the multi-
filters and hence it should be possible to impose conditions on the
matrix filter coefficients to obtain additional desired properties.

5. AN EXAMPLE: DISJOINT MULTISCALING
FUNCTIONS WITH APPROXIMATION ORDER = 2

We now provide an example of a multiwavelet system with disjoint
multiscaling functions and approximation order =2. Consider the
sequence of matrix coefficients

C0 =

�
h1(0) h1(1)
0 0

�
; (37)

C1 =

�
h1(2) 0
0 h2(3)

�
; (38)

C2 =

�
0 0

h2(4) h2(5)

�
; (39)

C3 =

�
0 0

h2(6) 0

�
: (40)

It is easily verified that this sequence of matrix filter coefficients
satisfies the disjoint support criterion (6, 7) withN1 = 0; N2 =
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Figure 1: Disjoint multiscaling functions forr = 2

1; N3 = 2 and hence will give rise to multiscaling functions with
disjoint support. Next, we shall impose additional constraints on
this sequence of matrix coefficients to enable it to achieve approx-
imation order =2.

Strela ([9]) proves that a multi-scaling function�(t) 2 L1

with linearly independent translates�(t � k); k 2 Z has ap-
proximation orderm if and only if there exist (non–zero) vectors
uj ; j = 0; : : : ; (m� 1) such that

X
k

jX
l=0

�
j

l

�
(�k)j�lulC(2k + 1) = 2�juj (41)

X
k

jX
l=0

�
j

l

�
(�k)j�lulC(2k) = 2�j

jX
l=0

(�1)j�l
�

j

l

�
ul

(42)
On plugging the matrix coefficients (37–40) arising from the

disjoint support criterion in (6, 7), into the equations associated
with the approximation order (41, 42), we obtain a set of nonlinear
equations which is easily solved using Gr¨obner bases [17] made
available through the software package “Singular” [18]. One of
the four resulting solutions ish1(0) = 0:5; h1(1) 6= 0; h1(2) =
0:5; h2(3) = 0:5; h2(4) = 0; h2(5) = 1; h2(6) = 0. When the
free parameterh1(1) is set to1, the disjoint multiscaling functions
shown in figure (1) are obtained. This simple example establishes
the existence of multiwavelet systems with disjoint multiscaling
functions and specified approximation order.

6. CONCLUSIONS AND FUTURE WORK

We defined the disjoint support property as applicable to the mul-
tiscaling functions in a multiwavelet system. Next, we derived the
disjoint support criterion relating degrees of polynomials in the
matrix symbol of a wavelet system to the boundary points of the
support sets of the disjoint multiscaling functions. It is difficult
to directly integrate the disjoint support criterion into a larger sys-
tem of nonlinear equations that injects other desirable properties
into a multiwavelet system. This problem was circumvented by
applying a heuristic to determine the structure of the matrix coef-
ficients. This structure could then be imposed on a larger system



of nonlinear equations to enable the resulting multiwavelet system
to enjoy other desirable properties. Finally, we confirmed the exis-
tence of multiwavelet systems with disjoint multiscaling functions
and approximation order =2.

Our preliminary results are encouraging since

1. they illustrate that the disjoint support property is not overly
restrictive. In particular, we established that although mul-
tifilters with the disjoint support property are sparse, they
may be arbitrarily long. This is significant since short, sparse
multifilters would curtail the available degrees of freedom
making it difficult for the multiwavelet system to enjoy other
desirable properties.

2. they confirm the existence of multiwavelet systems with the
disjoint support property and specified approximation or-
der, in a short multifilter.

Further work remains to be done in order to determine the
applicability of MSMFDS’s to practical problems. The conse-
quences of enforcing disjoint support of the multiwavelet functions
(as opposed to disjoint support of the multiscaling functions) may
also prove useful in this regard. The time–domain techniques for
the design of multiwavelet systems with the disjoint support prop-
erty presented here are inconvenient for the design of complex sys-
tems due to the need to solve large sets of nonlinear equations. It
would thus be profitable to investigate frequency–domain design
techniques.

To conclude, we reiterate our conjecture that MSMFDS’s are
“inbetween” traditional wavelet systems and traditional multiwavelet
systems. They have more degrees of freedom than traditional wavelet
systems since they exploit several basis functions, yet they are a
bit more restrictive than traditional multiwavelet systems due to
the sparsity of their matrix coefficients. This observation justi-
fies further work channelled toward reaping the benefits of multi-
wavelet systems, while being able to avoid some of their inherent
disadvantages, such as the dire necessity to prefilter, and increased
computational complexity.
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