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ABSTRACT

Multicarrier modulation (MCM) is a promising technique for high
rate data transmission. A one-tap equalizer is an essential part
of the MCM system and the channel estimation is needed to get
the coefficient of the equalizer. Lack of correct channel estimation
may cause significant performance degradation. We propose to use
the cyclic prefix to estimate the channel for the MCM system. We
found that the cyclic prefix originally used solely to guarantee the
optimality of modulation using discrete Fourier transform (DFT)
can be viewed as a source of channel information. Based on this
observation, we propose a joint channel estimation and equaliza-
tion algorithm using the cyclic prefix. Our simulations show that
the algorithm can adaptively track the variation of a moderately
time varying channel and has about 1-2dB gain over the system
using the channel estimation obtained by the conventional training
schemes.

1. INTRODUCTION

Multicarrier modulation (MCM) is now considered an effective
technique for high rate data communications in both wire and wire-
less environments. The principle of MCM is dividing the transmit
data into several parallel low bit rate data streams, and using these
data streams to modulate several carriers, which in frequency do-
main is equivalent to partition the entire channel into several par-
allel subchannels.

MCM provides an optimal way for channel capacity usage by
adjusting the bit rate and transmit power according to the SNR
of subchannels. MCM also has a relative longer symbol duration
since it is a block oriented technique. The long symbol duration
produces greater immunity to impulse noise and fast fading. Be-
cause of these advantages, MCM is considered a promising ap-
proach in digital subscriber line (xDSL), digital video/audio broad-
casting, and wireless communications.

In MCM system, usually a one-tap equalizer is needed for
each subchannel to get the estimations of transmitted data. The
channel information is essential to the coefficients of the equal-
izers. Some techniques, such as differential PSK modulation, are
used to eliminate the need for channel estimation and equalization.
However, differential demodulation causes 3-4dB Signal to Noise
Ratio(SNR) loss compared with coherent demodulation if channel
information is known. Moreover, channel information is also very
important for the bit and power allocation.

In applications such as xDSL, some training processes are per-
formed to estimate the channel before the communication is set

up. Then, this channel estimate is used through the entire com-
munication. If the channel changes, retraining is required to track
the variation. Recently some research has been done on channel
estimation and tracking in wireless communications. A minimum
mean square error estimation algorithm is proposed in [5].

In this paper we propose a new channel estimation scheme that
can track the change of the channel parameters without retrain-
ing. Usually a cyclic prefix or a guarding period is added between
two symbols in MCM system in order to reduce the intersymbol
interference (ISI). We propose to use the cyclic prefix, which is
normally discarded, for channel estimation and equalization. We
observed that the prefix actually provides a constantly sent training
sequence if accurate transmit signal can be recovered by the con-
ventional MCM systems. A joint channel estimation and equal-
ization algorithm using the cyclic prefix is proposed based on this
observation. Simulations were performed under the asymmetric
digital subscriber line(ADSL) environment to show the effective-
ness of the algorithm.

2. MCM SYSTEM USING CYCLIC PREFIX

MCM partitions a spectrally shaped channel into a number of par-
allel and subchannels by modulating a set of orthonormal basis
functions. Most of the MCM systems choose the inverse discrete
Fourier transform (IDFT) as the orthonormal basis. Fig. 1 shows a
MCM system using IDFT as modulation scheme.

Input data are first buffered into blocks which are used to
form the symbols transmitted in channel. Each block of data is
then divided intom=2 bit streams in a manner determined dur-
ing system initialization and mapped to some complex subsym-
bols to form the input of am-point IDFT which is represented as
Xk = [X0;k X1;k � � � Xm�1;k]

T , whereXi;k is theith input of
IDFT. The modulation is then performed bym-point IDFT and the
result isxk = [x0;k x1;k � � � xm�1;k]T .

The channel is usually modeled as a FIR filter with lengthv+
1. The impulse response of the channel ish = [h0; h1; � � � ; hv]T .
To reduce the ISI caused by the channel memory, a cyclic prefix
x
(f)
k = [x�v;k � � � x�1;k]T , which consists the lastv samples of
xk, i.e.,x�i;k = xm�i;k; i = 1; � � � ; v, is appended in front of
xk before transmission.

At the receiver, the prefix party(f)k = [y�v;k � � � y�1;k]T is
discarded, onlyyk = [y0;k y1;k � � � ym�1;k]T is used for demod-
ulation. The demodulation is performed by the DFT operation and
the result isYk = [Y0;k Y1;k � � � Ym�1;k]T .

It can be proved that the above modulation scheme is optimal
due to the use of cyclic prefix in the sense that the mutual infor-
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Figure 1: MCM System with Cyclic Prefix and Adaptive Channel
Estimation

mation is maximized. Asm goes large, the subchannels can be
viewed as independent with each other, i.e.,

Yi;k = Xi;kHi +Ni;k

Hi =

vX
l=0

hle
�j2�il=m (1)

are samples ofm point DFT ofh. Ni;k are samples ofm point
DFT of the channel noise.

AssumingNi;k are independent with each other, the best esti-
mation ofXi;k fromYi;k is achieved by applying a one-tap equal-
izerwi to Yi;k, i.e.,

X̂i;k = Yi;k � wi. (2)

The optimal coefficient for the one-tap equalizer is:

wi =
�

1

2

i H�
i

�ikHik2 +�i
(3)

where�i is the transmitted power ofXi;k and�i = E[kNi;kk2].
Then, �Xi;k is the hard decision result of̂Xi;k, i.e., �Xi;k =

q(X̂i;k), whereq(�) is some kind of quantization function.

3. THE EXISTING TRAINING METHOD

The channel is modeled as the FIR filter stated before. When a
training sequencexk is sent to a channel, the output of the channel
is:

yk = xk � hk + nk.

wherenk is uncorrelated random noise. Supposeĥk is the esti-
mation ofhk, then the estimated outputŷk = xk � ĥk. The best
ĥk is chosen to minimize the power of the error�k = yk � ŷk.
This is the familiar quadratic form of minimizing the mean square
error problem. There are many well-known methods to solve this
problem, such as least squares (LS) method which is also used in
our algorithm.

For MCM systems, we need to estimate the channel parame-
ters in frequency domain. Instead of the time domain algorithm,
an equivalent frequency domain deterministic least squares (DSL)
channel identification algorithm can be used. In this algorithm,
a training block with lengthm is sent periodically, and then the
channel outputs are collected and averaged to reduce the influence
of channel noise. The DFT of channel response is obtained by
performing element by element division between the DFT of the
averaged channel output and the input training sequence. Several
different training blocks with guarding band can be used in order
to further average out any non-linear effects. The final estimation
is obtained by averaging the results of all these training blocks.

4. THE PROPOSED JOINT CHANNEL ESTIMATION
AND EQUALIZATION ALGORITHM

4.1. Observation on Cyclic Prefix

The training algorithms above is designed for the time-invariant
system, which means new training process must be performed if
the channel varies. However, in the MCM system using cyclic
prefix, we can view the cyclic prefix as a training sequence and
use it to track the variation of the channel.

Let’s consider the prefix party(f)k which is originally dis-

carded. The relationship betweeny(f)k and the transmit signal is

y
(f)
k = Akh+ n

(f)
k (4)

where

Ak =

2
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andn(f)k = [n�v;k � � � n�1;k]T .

The lower triangle part of matrixAk is composed byx(f)k ,
while the upper triangle part is composed by the lastv�1 samples
of xk. However, this lastv�1 samples are also the elements of the
prefixx(f)k�1. So if all the prefix parts concatenate together as a pair

of sequencesx(f) = f� � �x�v;k�1 � � �x�1;k�1x�v;k � � �x�1;k � � �g
andy(f) = f� � � y�v;k�1 � � � y�1;k�1 y�v;k � � � y�1;k � � �g, the re-
lationship between these two satisfies

y
(f)
k = x

(f)
k � hk + nk. (5)

If we can get accurate estimations of transmitted prefix by the
conventional MCM method, i.e., we knowx(f), then (5) shows
that y(f) andx(f) form a pair of training sequences that can be
used to estimate the channel.

One problem here is that we can only get the estimate of this
training sequence. This estimate forms a feedback loop for the
channel estimation. The error incurred by the inaccurate estima-
tion may propagate. In order to reduce the probability of error
propagation the samples after hard decision,�Xk, are used to esti-
mate the transmit prefix. Since the prefix is a time domain signal
while �Xk are in frequency domain, an IDFT is performed to get
the time domain estimation of�xk.



4.2. Least Square Method to Estimatêh

Several methods have been tried to solveĥ from the training se-
quence formed by the cyclic prefix. The following method has the
best performance in simulation.

The idea of this method is trying to use LS method directly to
solve (4). However, it is observed thatAk is an under-determined
matrix. In order to reduce the effect of random noise, we expand
(4) to form the following equation:
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After arranging data to the above form, the LS solution is given
by

ĥ = A
y
N;L(k)yN;L(k)

whereAN;L(k) = [Ak�N � � �Ak � � �Ak+L]
T andyN;L(k) =h

y
(f)
k�N � � �y(f)k � � �y(f)k+L

iT
. Ay

N;L(k) is the pseudo inverse of

AN;L(k) that can be obtained by performing singular value de-
composition (SVD) onAN;L(k), which is an(N + L + 1)v �
(v+1) matrix. UsuallyN; L > 0, so the rank ofAN;L(k) is con-
strained by the length of the prefix, i.e.,Rank(AN;L(k)) � v+1.

The roles ofN is some kind of similar to forgetting factor.L
is used to guarantee the amount of data is enough to get an accurate
estimation.

4.3. Joint Channel Estimation and Equalization Algorithm

Based on the discussion in section 4.1 and 4.2, we summarize the
channel estimation and equalization algorithm as the following:

Input: received prefix party(f)k and demodulated signalYk.

Known parameters:transmitted power�i and noise power�i.

Selecting parameters:N andL.

Initialization: k = 0, an initial training is used to get the estima-
tion of ĥ(0).

Computation:k = 1; 2; 3; � � �

Hi(k � 1) =

vX
l=0

ĥl(k � 1)e�j2�il=m

wi(k � 1) =
�

1

2

i Hi(k � 1)�

�ikHi(k � 1)k2 +�i

X̂i;k = Yi;kwi(k � 1)

�Xi;k = q(X̂i;k); i = 0; 1; � � � ;m� 1

�xi;k =

m�1X
l=0

�Xl;ke
j2�il=m; i = m� v; � � � ; m� 1

If k = nL, wheren is an integer, use�xi;k calculated above
to form the matrixAN;L(k � L), then,

ĥ(k) = A
y
N;L(k � L)yN;L(k � L);

otherwise,̂h(k) = ĥ(k � 1).

Here, what we present is actually a block recursive algorithm
and the channel estimation is refreshed everyL symbols. The sym-
bol by symbol recursion is just the special case asL = 1. The rea-
son for such a scheme is that this algorithm is a feedback scheme
which combines channel estimation and equalization together. It
requires more most recently data to keep on with the channel vari-
ation. Our simulation shows that bothN andL should be chosen
carefully to get the best performance, usuallyL > 1.

5. SIMULATION RESULTS

In our simulation, the transmit power of all the used subchannels is
set to equal and fixed to1. QAM signal is used in each subchannel.
At first, some target error probabilityPe is preset. Then the bit is
allocated by the following error probability constraint

Pe � 4Q(
dikHikp

�i

)

wheredi is the minimum distance between the signal points in
QAM constellation of theith subchannel.

Initially the channel transfer function is

H0(D) =
0:1 + 0:8D2

1 � 1:5D + 0:54D2

The bit allocation is done according to this transfer function and
will keep unchanged during the simulation. After some time, the
channel transfer function will change to someH(D). Two differ-
ent transfer function are used forH(D).

H1(D) =
0:1 + 0:6D2

1 � 1:5D + 0:54D2

H2(D) =
0:1 + 0:8D2

1� 1:4D + 0:5D2
.

Length of FFT is chosen asm = 512. White noise is used in
order to simplify simulation, i.e.,�i = �.

The averaged mean square error (MSE) per subchannel is de-
fined as

err =

P
i2U

erri

jU j
whereerri = kXi � X̂ik2 is the MSE of theith subchannel and
U is the set of all the used subchannels.jU j is the number of all
the used subchannels.

In our algorithm, first 2 frames of data are sent as pure train-
ing sequence to get the initial channel estimation. After that, the
real data are sent and the joint channel estimation and equalization
algorithm is used to track the variation of the channel. Fig. 2-4
show the results of the simulation. The solid lines in Fig. 2 and 4
show the result of the joint channel estimation and equalization
algorithm. The DSL channel identification algorithm is also per-
formed for comparison. The dashed lines show the result of using
the channel estimation obtained by DSL forH0(D) without re-
training when channel changes, while the dash-dot lines show that
of using the channel estimation obtained by DSL forH(D) when
channel changes. However, the training processes are not repre-
sented in the following simulation results, since the block lengths
of the training sequence and data transmission are different. It
should be noted that only the channel estimations obtained by DSL
are used in the following simulation and extra training sequences
are needed in order to get those estimations.
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Figure 2: Average MSE per Subchannel (� = 0:01; v = 128)

In Fig. 2, the length of the prefix is 128.N andL are 2 and
5 respectively. The average MSEs per subchannel are plotted.
The channel changes fromH0(D) to H1(D) in Fig. 2(a) while
it changes toH2(D) in Fig. 2(b). We can see that the algorithm
converges when the channel varies. However, it converges faster
in (a), in about 10 symbols, than in (b), in about 100 symbols. If
we consider that the channel change is more dramatic in (b) than
in (a), the result is satisfiable. Moreover, the algorithm can not
only track the channel variation but also achieve about 1dB gain
over the DSL method. In Fig. 2(a) the MSEs are plotted for both
the targetPe = 10�7 andPe = 10�3. In both cases, all256
subchannels are used and the SNRs of each subchannel are identi-
cal. The only difference between these two cases is the minimum
distance between the signal points, which means the errors of the
estimation for the transmit prefix are different. The results shows
that the adaptive algorithm is robust enough to such an estimation
error. The MSE ofPe = 10�3 is only a slightly larger than that
of Pe = 10�7.

In Fig. 3, the MSE of the88th subchannel are plotted for noise
power� = 0:01 and0:1 respectively, which means the SNR of
this subchannel as� = 0:01 is 10dB higher than that as� = 0:1.
This difference is compatible with the MSE difference in Fig. 3.
As SNR goes down, the MSE is mainly caused by noise and the
degradation brought by the inaccurate channel estimation becomes
smaller.

Fig. 4 shows the result with much shorter length of prefix,v =
64. N andL are chosen as 4 and 7. The other conditions of
Fig. 4 are the same as those in Fig. 2 and the result is also similar.
The performance gain over the DSL reaches 2dB which is even
larger compared to the case with longer prefix length. However,
the algorithm converges slower, in more than 100 symbols. This
is because we need to collect more symbols to get an accurate
estimation, i.e, sincev is small,N andLmust be large to maintain
the dimension ofAN;L(k) to some level. IfN andL are too
small, the channel estimation error becomes large enough to cause
the error propagation through the equalization and the algorithm
can not converge. As the prefix length goes even smaller, the error
brought by the channel memory becomes too large that will also
make the adaptive algorithm collapses. The smallest number we
tried in our simulation that can still make the algorithm converge
is 32.
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Figure 3: MSE of the88th Subchannel (Pe = 10�7; v = 128)
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Figure 4: Average MSE per Subchannel (� = 0:01; v = 64)

6. CONCLUSION

We have presented a joint channel estimation and equalization al-
gorithm using the cyclic prefix in MCM system. This algorithm
can adaptively track variation of a moderately time varying chan-
nel without additional training. Moreover, it also can give about
1-2dB improvement over the conventional training schemes.
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