
A NEW PARALLEL DSP WITH SHORT-VECTOR
MEMORY ARCHITECTURE ‡

Jose Fridman and William C. Anderson

Analog Devices, Inc.
One Technology Way

Norwood MA, 02062, USA
http://www.analog.com

‡ Work sponsored in part by DARPA-ITO contract number N66001-96-
C-8610, under the Embeddable Systems Program.

ABSTRACT
This paper presents a new highly-parallel DSP architecture
based on a short-vector memory system developed at Analog
Devices, Inc. This DSP incorporates for the first time in an
embedded processor a number of techniques found in general-
purpose computing, such as branch prediction, deep and fully-
interlocked pipeline, and SIMD instruction execution. By means
of its short-vector high-bandwidth memory system it is able to
deliver sustained performance that is close to its peak
computational rates of 1.5 GFLOPS (32-bit floating-point), or 6
BOPS (16-bit fixed-point).

I. INTRODUCTION

In recent months, several new multi-datapath and pipelined
Digital Signal Processors (DSPs) have been announced. This
new generation of DSPs is taking advantage of higher levels of
integration than was available for their predecessors, and are
incorporating multiple execution units on a single core, as well as
building deep execution pipelines. For comprehensive analysis
on the state-of-the-art of DSP chips, see [1,2].

In order to sustain the high computation rates of cores with
multiple execution units, memory subsystems must scale
proportionately. In this paper we describe a new parallel DSP
architecture from Analog Devices, Inc., called TigerSHARCTM,
and focus on the computational aspects of its core and on its on-
chip memory architecture. Our solution to the high bandwidth
demands of this parallel DSP core is based on an on-chip
memory architecture that relies on short-vector processor
techniques.

In addition to the architectural description, we also present an
application example of a FIR filter. With this example, we
illustrate that a large class of DSP algorithms (namely structures
with register delays like FIR and IIR filters) presents a data
alignment problem when mapped into vector-oriented
processors. We show how specific alignment hardware can be
used to mitigate the alignment problem, and that the proper
choice of algorithmic map is required for high-efficiency
solutions. In addition to data alignment, we show that the full
SIMD dispatch mechanism, although very effective in simple
vector and matrix operations, may be overly restrictive when

applied to this class of DSP algorithms, and that non-SIMD
execution is required for high efficiency.

The first device will deliver 1.5 GFLOPS (Giga Floating-Point
Operations Per Second), or 6 GOPS of 16-bit arithmetic
(Operations Per Second), and sustain an internal data bandwidth
of 12 GB/s (Giga Bytes per second), at a clock rate of 250 MHz.

Recent trends in DSPs have also shown that techniques found in
general-purpose computing have been migrating to DSP and
embedded computing. The TigerSHARC has a number of
general-purpose mechanisms that have not been incorporated on
any DSP to date. The most significant aspects of this new DSP
architecture are:

1. Register-based load-store static superscalar dispatch
mechanism, with instruction parallelism determined prior to
run time under compiler and programmer control.

2. Support for multiple data types, including IEEE single
precision floating-point, 32-bit, 16-bit and 8-bit fixed-point.

3. Parallel arithmetic operations for 2 floating-point MACs or
for 8, 16-bit MACs per cycle, with an optional Single-
Instruction Multiple Data (SIMD) execution mechanism.

4. Highly parallel short-vector oriented memory architecture.

5. A total of 128 architecturally-visible and fully interlocked
registers

6. 8-stage fully-interruptible pipeline, with a regular 2-cycle
delay on all arithmetic and load/store operations, and a
128-entry, 4-way set-associative Branch Target Buffer.

This paper is organized as follows. In section II we present a
brief description of the architecture. In section III we present
DSP benchmark figures and an application example, and a
summary in section IV.

II. ARCHITECTURAL DESCRIPTION

Figure 1 shows a block diagram with the major components of
the architecture. Each computation block on the lower left of
Figure 1 (CBX and CBY) consists of a 32-word general purpose
register file, an ALU, a multiplier, a generalized bit manipulation
unit (shifter), and a Data Alignment Buffer (DAB). The
computation blocks constitute the two main data paths. Each

computation block has two 128-bit ports that connect with the
internal bus system. The bus system in turn consists of three,
128-bit buses, and acts essentially as a large crossbar connection
between all the major blocks.

In the upper part of Figure 1 there are two integer units (JALU
and KALU), collectively called IALU, which function as
generalized addressing units, each with a general-purpose 32-
word register file.

M0M0 M1M1 M2M2

SequencerSequencer

128-entr y128-entr y
BTBBTB

ExternalExternal

PortPort

DMADMA

SDRAMSDRAM

CNTRLCNTRL

128b128b

J ALUJ ALU

J-RFJ-RF
00

3131

Comp Block Y

RFRF00

3131

ALUALU

MultMult

ShiftShift
3131

Comp Block X

RFRF00 ALUALU

MultMult

ShiftShift

128b128b

3131

128b

K ALUK ALU

K-RFK-RF
00

3131

addr
128b

Figure 1: Block diagram showing the major sub-systems
of the DSP.

There are three internal SRAM memory blocks, each with a 128-
bit port into the internal bus system. These are shown as the three
blocks labeled “M0” “M1” and “M2” in Figure 1.

The sequencer is shown in the upper-left of Figure 1, along with
a 128-entry, 4-way set-associative Branch Target Buffer (BTB).
The three internal buses provide a direct path for instructions into
the sequencer, as well as two independent paths that may connect
each memory block with each computation block, where a path
can carry up to four, 32-bit words per cycle.

The peak computation rates achievable by this DSP at 250 MHz
are summarized in Table 1.

Ops/cycle Rate at 250
MHz

IEEE floating-point arithmetic 6 1500 MFLOPS

floating-point MACs 2 1000 MFLOPS

16-bit arithmetic 24 6000 MOPS

16-bit MACs 8 4000 MOPS

16-bit complex MACs 2 4000 MOPS

Table 1: Peak computation rates at 250 MHz

A. Sequencer

The DSP’s sequencing mechanism is based on a static
superscalar approach, where one to four instructions are executed
per cycle in what we call an instruction line, with instruction-
level parallelism (ILP) determined prior to run time by code
generation tools or a programmer. An instruction line may
contain from 1 to 4 instructions, and the processor has a

throughput of one instruction line per cycle. The idea of exposing
ILP to the compiler comes from the older Very-Long Instruction
Word (VLIW) approach, but the sequencing in this DSP is a
much more general mechanism that avoids notorious VLIW
shortcomings.

The sequencer has three basic attributes:

1. All registers are fully interlocked,

2. All compute and memory access instructions have a regular
2 cycle delay pipeline, and

3. Compute block instructions have optional SIMD capability,
where a single instruction is issued to two units in parallel.

Similarly to general-purpose RISC processors, the interlocking
register files enable a programming model that is functionally-
defined at instruction line boundaries. There are two important
implications of this.

One is that in this interlocked environment, code scheduling
around the processor pipeline is required for performance only,
but not to guarantee program correctness. In addition, the
programming model guarantees that all the instructions in the
same instruction line commit at the same time, and hence
program correctness is preserved in spite of possible code
scheduling imperfections. Simple programming models like this
one are particularly important in embedded processing, where a
relatively large portion of the most time-critical code base is still
developed directly by assembly programmers.

The second implication is that the core supports a fully
interruptible and responsive system, also a fundamental
requirement in embedded computing. This also includes precise
software exceptions.

An additional aspect of the programming model related to code
scheduling is that all computation block instructions, as well as
memory load instructions, have a pipeline delay of exactly 2
cycles. That is, the results of an instruction that executes at cycle
0 are always available at cycle 2. All IALU address calculations
have a single cycle pipeline delay, and hence there is no
scheduling required for address calculations.

SIMD execution improves code density by issuing one compute
block instruction to two execution units simultaneously. In the
section below, we present an example where portions of an
algorithm exhibit a type of symmetry that can be used to take
advantage of SIMD execution (namely, the addition portions of a
FIR filter). We also show that in other portions of the same
algorithm, SIMD execution may be overly restrictive, and a
direct (non-SIMD) execution mechanism is also required.

B. Short-Vector Memory

In order to sustain high core compute rates, the memory
architecture is capable of handling transactions that carry several
words of data per access, in what we call a short-vector access. A
memory transaction can carry from 1 to 4 words of consecutive
data, and there may be up to 2 simultaneous transactions per
cycle. A memory access can move data from any one of the 3
internal memory blocks to/from any one of the 4 register files.

There are 3 distinct types of memory access: (a) direct, (b) split,
and (c) broadcast. These accesses vary according to the way that
a short vector is routed to the compute blocks or to the memory
blocks. In Figure 2 we show an example of a direct, a split, and a
broadcast quad-word load, where {a3,a2,a1,a0} represent 4
consecutive 32-bit words in little-endian order (word with
smallest address on the right).

a 3 a 2 a 1 a 0

 a 4

1 2 8 b its

x R 0

x R 1

x R 2

x R 3

x R 4

a 0

a 1

a 2

a 3

C B X R F

x R 0

x R 1

x R 2

x R 3

x R 4

a 2

a 3

C B X R F
y R 0

y R 1

y R 2

y R 3

y R 4

a 0

a 1

C B Y R F

x R 0

x R 1

x R 2

x R 3

x R 4

a 0

a 1

a 2

a 3

C B X R F
y R 0

y R 1

y R 2

y R 3

y R 4

a 0

a 1

a 2

a 3

C B Y R F

d ire c t ld

s p lit ld

b c a s t ld

Figure 2: Three access types for quad-word loads.

C. Computation Blocks and
Arithmetic Capability

In addition to single and extended precision floating-point
support, the instruction set directly supports most 16- and 32-bit
fixed point DSP, image, and video data formats including:
fractional, integer, signed and unsigned. There is partial support
for 8-bit data types. All the fixed point data formats have
optional direct support for saturation arithmetic, and data type
combinations are supported by means of instructions, rather than
by hardware modes. For instance, there are 3 different
instructions for performing fixed point addition: (a) add signed
saturate, (b) add unsigned saturate, and (c) add and do not
saturate. Specifying arithmetic data types by means of
instructions rather by hardware modes is important in enabling a
compiler to make effective use of DSP data types.

At 32-bit, the peak computation rate is 6 arithmetic operations, or
2 MACs per cycle. And in parallel, the memory architecture can
sustain 2, 128-bit wide load/store operations, as well as 2 address
calculations. The following instruction line is an example of this
peak rate:

xR3:0=Q[j0+=4]; // load to CBX ptr. j0
yR3:0=Q[k0+=4]; // load to CBY ptr. k0
FR5=R4*R4; // 2 SIMD multiplies
FR9:8=R6+/-R7;; // 2 SIMD adds, 2 subtracts

In this instruction line, the first two instructions are quad direct
loads, the third is a SIMD multiplication (executed in both
compute blocks), and the fourth is a SIMD add and subtract. (See
Section III for an example and use of non-SIMD instructions.)
Instructions are separated by semi-colons, and linstruction lines

by double semi-colons. All 4 instructions in this line execute
with throughput of one cycle. The “F” prefix indicates that these
instructions operate on floating-point data.

At 16-bit, the peak computation rate is 24 arithmetic operations,
or 8 MACs per cycle, i.e.,

xR3:0=Q[j0+=4];
yR3:0=Q[k0+=4];
sR7:6=R5:4*R5:4; // 8 SIMD multiplies
sR11:10=R9:8+/-R9:8;;// 8 adds, 8 subtracts

The third instruction is an 8-way SIMD multiplication. In one
compute block, say CBY, the register pair YR5:4 holds 4, 16-bit
input values, and the 4 results are stored in register pair YR7:6 .
And similarly for CBX, with register pairs XR5:4 and XR7:6 .
In a sense, this is a two-level SIMD instruction: at the high level
this instruction is issued to both multipliers, and at the low level
it specifies that 4 packed multiplications be carried out in each
multiplier. The “s ” prefix indicates that these instructions
operate on short-word (16-bit) data.

III. Benchmarks and Application Example

In Table 2 we show the kernel benchmarks for the FFT and the
FIR filter, both for floating-point and 16-bit data types. These
figures include all software overheads required to accomplish the
tasks. In terms of peak MAC rates, the 32-bit FIRs achieve an
efficiency of 90% (1.8 MACs/cycle, given a theoretical
maximum of 2 MACs/cycle), and the 16-bit FIRs an efficiency of
88% (7.1 given 8 MACs/cycle). The complex FIR filters are
programmed using native hardware support for complex 16-bit
MACs.

Execution
time

Clock
cycles

Floating-point:

1k complex FFT, radix 2 41Ps 10,300

50-tap FIR on 1k-samples 110Ps 27,500

Single FIR MAC 2.2ns 0.55

16-bit fixed point:

256-pnt. Complex FFT, rad 2 4.4Ps 1,100

50-tap FIR on 1k-samples 29Ps 7,200

Single FIR MAC 0.56ns 0.14

Single complex FIR MAC 2.28ns 0.57

Table 2: DSP benchmarks at 250 MHz

There are 3 distinct types of parallelism available in this DSP: (a)
latency-2 computational pipeline, (b) multiple compute units, and
(c) short-vector memory. These 3 forms of parallelism are
complementary to each other, and all 3 must be used in order to
achieve a high level of efficiency.

To take advantage of the computational pipeline, conventional
loop unrolling and software pipelining techniques are applied
[3]. Distributing computations to compute blocks may be
accomplished by performing data-dependence analysis, a subject
has been treated extensively in the general context of parallel
computing [4], and also from the point of view of DSP

algorithms [5]. In the remainder of this section, we present an
example that illustrates the use of these parallel techniques.

A. FIR Filters

FIR filters are closely related in structure to the vector product.
Since vector-oriented processors are very effective in computing
vector product operations, and linear algebra in general, on the
surface it may seem that it is straight-forward to apply vector
techniques to DSP algorithms like FIR filters.

However, data alignment requirements of FIR filters are different
than those of linear algebraic algorithms, and in general this
represents a barrier to realizing high efficiency implementations
of FIR filters in vector-oriented processors. In order to achieve
appropriate data to coefficients alignment, the interface of the
compute blocks to the memory system has a data alignment
buffer (DAB), that provides quad-word alignment at 32-bit and
16-bit boundaries.

The upper part of Figure 3 shows a diagram with the location of
input data and coefficients in quad-word memory. In the lower
part of this figure, we show the assembly code segment for the
inner loop of the FIR. All instructions in a line are executed in
one cycle and commit at the same time. In this code segment, the
left-most column of instructions has data loads via the DAB
(using pointer j0), and coefficient loads (using pointer j1 , and
with automatic circular buffering). Both loads are of type quad-
word broadcast, so that the same data is replicated and shared in
both compute blocks. This figure also shows that the result of
quad DAB loads are the 4, 32-bit elements {a[5] a[4] a[3]
a[2]} .

Similarly to the way that short-vector memory operations can
result in poor performance if not aided by hardware alignment,
the full SIMD execution mechanism can in some instances be
overly-restrictive, and may be another cause of performance loss.
Some DSP algorithms exhibit a type of symmetry that allows the
use of SIMD execution, but very often there are symmetries
(either in complete algorithms or portions of them) that cannot be
efficiently parallelized with SIMD.

In this FIR filter example, the add instructions (in the right-most
column) are issued as SIMD instructions. Each one of the add
instructions specifies a total of 2 floating-point adds, one in each
computation block (this is denoted by the absence of “x ” or “y ”
instruction prefix).

However, the second and third columns of multiplications are not
issued in SIMD mode, each instruction individually controls a
multiplication in each computation block. The second column
controls CBX, and the third controls CBY. This type of non-
SIMD execution is used in this example to achieve single-
element misalignment between the computation blocks, which is
required to compute two output samples per inner loop iteration.

We use a simple partitioning where the Data Dependence Graph
[5] of the FIR is split so that all the MACs of output b[n] are
mapped to CBY, and all MACs of b[n+1] are mapped to CBX,
where b[n] is the output signal, and n the time index.

The efficiency of this example for filters in the range of 50 taps is
90% relative to the peak MAC rate of 2 MACs/cycle. This figure

accounts for all software overheads such as loop prolog and
epilog, initialization code, as well as branch misprediction losses.

INNER__:

 xfr8=r5*r27; yfr8=r4*r27; fr10=r10+r8;;

r3:0 = dab q[j0+=4]; xfr9=r6*r26; yfr9=r5*r26; fr11=r11+r9;;

r23:20=cb q[j1+=j10]; xfr8=r7*r25; yfr8=r6*r25; fr10=r10+r8;;

 xfr9=r0*r24; yfr9=r7*r24; fr11=r11+r9;;

 xfr8=r1*r23; yfr8=r0*r23; fr10=r10+r8;;

r7:4 = dab q[j0+=4]; xfr9=r2*r22; yfr9=r1*r22; fr11=r11+r9;;

r27:24=cb q[j1+=j10]; xfr8=r3*r21; yfr8=r2*r21; fr10=r10+r8;;

if NLC0E, jump INNER__;

 xfr9=r4*r20; yfr9=r3*r20; fr11=r11+r9;;

 a3 a2 a1 a0
 ... a6 a5 a4

j0

j1

 CBX CBY

 c3 c2 c1 c0
 c7 c6 c5 c4
 ... c8

Broadcast loads
 via DAB

Misaligned
pointer to data

Aligned pointer to
coefficients

 c71 c70 c69 c68

 a5 a4 a3 a2 a5 a4 a3 a2

Figure 3: Code segment for FIR filter.

IV. SUMMARY

In this paper we have presented a new highly-parallel DSP
architecture that incorporates for the first time in an embedded
processor a number of mechanisms found in general-purpose
computing. These mechanisms include branch prediction, a deep
and fully-interlocked pipeline, SIMD instruction execution, and
register-based load/store instruction set. In addition, this
architecture uses a short-vector memory system to sustain high
computational core rates.

V. REFERENCES

[1] “Buyer's Guide to DSP Processors,” Berkeley Design
Technology, Inc., 3rd edition. 2107 Dwigth Way, Second
Floor, Berkeley, CA, 94704, USA. http://www.bdti.com.

[2] M. Levy, “EDN’s 1998 DSP-Architecture Directory,” EDN
Magazine, April 23, 1998. http://www.ednmag.com.

[3] J. Hennessy, D. Patterson, Computer Architecture, A
Quantitative Appproach, second edition, Morgan Kaufmann
Publishers, Inc. 1996.

[4] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing, The Benjamin/Cummings Publishing
Company, 1994.

[5] D. Moldovan, Parallel Processing: From Applications to
Systems, Morgan Kaufmann Publishers, 1993.

