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ABSTRACT the HMM set so that
This paper describes the application of a discriminative HMM pa- T(r)
rameter estimation technique called Frame Discrimination (FD), MO =T DO b P(gi|N)
to medium and large vocabulary continuous speech recognition. t=1 icM8en

Previous work has shown that FD training can give better results

than maximum mutual information (MMI) training for small tasks. wherez" (¢) is the vector representing framef utterance- which

The use of FD for much larger tasks required the development ofis of lengthT'(r), andb; (" (t)) is the output PDF of state The

a technique to be able to rapidly find the most likely set of Gaus- notationy ;. ... indicates summation over all the states in the

sians for each frame in the system. Experiments on the Resourcgecognition modeM ", i.e, all states in all HMMs in the system.

Management and North American Business tasks show that FDThe termP(g;|N) represents the prior probability of observing

training can give comparable improvements to MMI, but is less stateq;. This prior probability can conveniently be found from

computationally intensive. the state occupation counts from the forward-backward algorithm
used in MLE training.

1. INTRODUCTION
2. EXTENDED BAUM-WELCH RE-ESTIMATION

Previous research has shown that the accuracy of a speech recogni-
tion system trained using Maximum Likelihood Estimation (MLE) To optimise the parameters of HMMs when using rational objec-
can often be improved further using discriminative training. All tive functions such as FD, the extended Baum-Welch (EBW) re-
such techniques normally give much greater improvements in recogestimation formulae can be used. The EBW algorithm for ratio-
nition accuracy on the training data than on the test set exceptnal objective functions was introduced in [1] and developed in [3]
where the number of parameters to be estimated is very low. Fur-for the continuous density HMMs considered here. The EBW al-
thermore the computation required to optimise discriminative ob- gorithm has been successfully applied to MMIE optimisation for
jective functions is much higher than for standard Baum-Welch both small and large vocabulary tasks [5].
(i.e. MLE) training. The re-estimation formulae presented below have been found

This paper investigates a recently proposed [2] discriminative to work well in practice although they can be only proved to con-
objective function called Frame Discrimination (FD). In [2] itwas verge when a very large value of the constanis used which in
shown that on small isolated word recognition tasks FD gave im- turn leads to very small changes in the model parameters on each
proved generalisation compared to maximum mutual information iteration.
estimation (MMIE) and yielded superior test-set accuracy. Here  The update equations for the mean vector of mixture compo-
we investigate the extension of FD to large vocabulary continuous nentm of statej, u;,m, and corresponding variance vectof,,,,,
speech recognition. are as follows:

FD consists of a class of objective functions, of the form:
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where O, represents the speech data for the r'th utterance, and@?,m
M., the model corresponding to its transcription. The HMM

N, also termed the&lenominatormodel (while M.,,,. is the nu-
merator model), is derived from the model18°" which is used

to recognise speech. N were equal toM#**, we would have
the MMIE objective function. However in order to improve gen-
eralisation, FD uses a mod&f which is less constrained than the
recognition network. In particular we focus on zero memory frame R
discrimination. In this case\ is a zero memory Markov chain, 0,.m(0) = z
whose output PDF consists of a weighted sum of all the PDFs in

where the superscripten indicates the denominator HMM/ .
0;,m (O) represents the sum of the vectarof the training data
weighted by the probability of occupying mixture of statej at
that time frame whemr occurs, i.e:
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where~;j ,,, (t) is the probability of occupying mixture: of state A suitable distance measure between univariate Gaussians is the
Jj attimet. ~;,» represents the estimated count of the number of negative log of the overlap. To deal with multivariate Gaussians

times mixture component: of statej is occupied: with diagonal covariance matrices, the distance between corre-
- sponding univariate Gaussians is summed over all dimensions to
R - . .
- finally give a distance measure:
Yim(0) =3 Aim(t)
—1 $— 1 2)(-
e 58 ()87 () =3 ~1og 0(g/" (), 4")
The constant D was set on a phone-by-phone basis as in [5], g

subject to a floor at the maximum 9f,» andv;5 in the phone.  \yhereg is a multivariate Gaussial (x|u, £), andg; (") is the
The use of a floor was found to improve both convergence of the ynjvariate Gaussia (z|p;, ;)

FD criterion and recognition performance. _ The use of the overlap-based distance measure in the Roadmap
The standard update equations for the mixture weights [3, 5] gigorithm decreases the average reduction in total log probability
can be used for estimating the mixture weights or as an alternativeper frame by a factor of 7 relative to the case where divergence is

the formulation given in [4] can be used. used and the measure may have utility in other applications where
a distance measure between two Gaussians is required.
2.1. Implementation Considerations

In re-estimating the parameters it is necessary to calculate the pos3-2- Setting Up The Similarity Relation
terior probability of each Gaussian in the system for each input gqy the roadmap algorithm to operate, for each Gaussian a list of

vector .e. other similar Gaussians is required. This set of lists is called the
 don jmbjm (2" (£))P(q:|N) ‘roadmap” and following the analogy the lists represent the nearby
Vi (&) = v 1) set of Gaussians to which there are “roads”.
2 e Mee 2am=1 Cismbim (27 (8)) P(g;1N) The first stage is to obtain, for each Gaussiam list of the

closestn Gaussians in the system, according to the distance mea-

whereb;,m(-) is the Gaussian associated with mixtuneof state sure defined above. In experiments reported here,20. A naive

J» ¢j,m is the mixture weight for the Gaussian afd; the num- . . . - :
ber of Gaussians in the mixture for stateThereforeb, . (" (¢)) implementation would involve finding the distance between each

must be calculated for each Gaussian in the system and for ever)Palr of Gaussians, and would have taken time proportional to the

time frame and this calculation dominates the overall computation >+ o < of the number of Gaussians in the system. This is clearly
. putation i, suitable for very large HMM sets. An approximate iterative
required. Furthermore, for large vocabulary speech recognition

the HMM sets used often contain a very large number of GaussianSChe.me was therefore useq which avoid_s this e)_(haustive s_earch,
components and therefore complete computation of the denomina—bu.t finds then cI_osest Gaussians almost W't.hOUt fail. On egch tter-
tor of (1) would make the algorithm impractical. ation, the a_1|gor|thm only examines G_au_s&ans_ for potential |_nclu-
To make FD practical for large HMM systems (1) should be sion ina’s Il_st that are already in the similarity lists for (_Bauss_lans
computed for just the most likely Gaussians in the system (which currently d|r_ec_tly “connepted” ta. At the_end of egch lteration
. L then most similar Gaussians are placed in a new listfof here-
together contribute nearly all the log likelihood per frame) and the

denominator of (1) computed over just those Gaussians. There_fore on each iteration the distance between at mdsGaussian

fore, the Roadmap algorithm was developed with the aim of find- are computed for each However the number is considerably less
T : - X than this since redundant computation is avoided.
ing the most likely Gaussians in the system for each speech frame. The second stage adds to the similarity list of Gaussians close
to a, thoseb such that is in the list ofb. This avoids the problem
3. THE ROADMAP ALGORITHM case where a Gaussian is not very close to any other Gaussians,
) ) ) i ) _and may never appears in any of these lists.
The purpose of this algorithm is to find those Gaussians which  The third stage of building the similarity lists removes redun-
best match the input for each time frame, while minimising com- gant entries: entries are not required if there already exists another
putation. Associated with each Gaussian in the system is a list ofjngirect route via an intermediate Gaussian. Redundancy is de-
similar Gaussians which is used to navigate towards the best Gaustined more precisely in terms of the distance of the indirect route
sian in the system. A detailed description of the algorithm is given from ¢ to b via c:
in [4].
d(a,c)<0.96(a,b) Ad(c,b)<0.96(a,b) Ad(a,cHd(c,b)<1.76(a,b).

3.1. Distance Measure The removal of all these redundant links causes a modest increase

A widely used measure of the distance between two Gaussians ign the performance of the Roadmap algorithm.

the divergence. However for current purposes it was found thatthe ~ Finally the similarity lists for each Gaussian are sorted in order
divergence overstates the difference between the Gaussians whe#f distance which the closest Gaussians first in the list.

they have very different variances. Therefore an alternative dis-

tance measure was sought and one based on Gaussian “overlag8.3. Finding the Best Gaussians

developed. ) . o ) )
Here the overlap between two univariate Gaussians is defined! N® Roadmap algorithm is a hill-climbing algorithm which for
as: each speech frame starts from an initial set of Gaussians and aims
to terminate with the most likely Gaussians for the input speech
Wy @y _ ) 2) vector. Firstly the log likelihood of each of the initial set of Gaus-
Olg (), 97 ()) = /z:ﬂx) min(g™(2), 97 (v))dw sians is evaluated. For the Gaussians which are most likely the



Gaussians close to those (from the similarity lists) are examined.
The idea is that the algorithm will eventually go towards the region
of Gaussians which are most likely given the input speech vector.

For such an algorithm, there is no way to know when (or if) the

most likely Gaussian in the entire system has been evaluated. The
best that can be done is to evaluate a fixed number of Gaug€ians

6.5

5.5
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and hope that the best Gaussians will be among them. At the end .

all Gaussians;,,, which have been evaluated are returned, along
with the calculated valuds, ., (z" (¢)). These can then be used to
calculate the occupancig$ ,, (t) used in the extended BW update
equations.

In the following description of the Roadmap algorithm, Gaus-
sian functions will be denoted.The rule by which a Gaussian is
chosen to be computed is as follows: from among those Gaussian:
which have already been evaluated, take the Gaussiahich
gives the highest likelihood for the input. Then evaluate the first
Gaussian iru's list, i.e, that closest ta, if it has not already been
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evaluated. Otherwise compute the nextimlist. If all Gaussians

in a’s list have been evaluated, the same procedure is followed
for the Gaussian which gives the next best likelihood for the in-
put. If all Gaussians in the lists of all those which have been com-
puted have themselves also been evaluated, then evaluate a random
Gaussian. This situation can occur if there are no links (“roads”)
from an isolated region of Gaussians.

The set of Gaussians which is initially examined consists of Speech recognition experiments to evaluate FD have been con-
either a single arbitrary Gaussian or the b&btGaussians from  ducted on both the 1,000 word Resource Management (RM) task
the last input frame. In the experiments reported here, the best 20and on the North American Business (NAB) News task using a 65k
from the last input frame were used. It is found that in practice the word recognition system. In all cases initial MLE trained models
Roadmap algorithm can reliably find the most likely Gaussians in were used and then subsequent FD training was performed.
the system for each frame while only evaluating a small percentage
of them (typically between 1 and 10%, decreasing with increasing 4.1. Resource Management Experiments
system size).

Figure 1: FD criterion and RM feb91 accuracy varying with time

4. EXPERIMENTAL EVALUATION

For the RM experiments, a set of decision-tree state-clustered cross-
word triphones were trained using MLE on the SI-109 training set
(3990 utterances) using HTK in the manner described in [7]. The
input speech for this system was parameterised as Mel-frequency
) o cepstral coefficients (MFCCs) and the normalised log energy; and
The performance of the Roadmap algorithm is judged by two mea- e first and second differentials of these values.
sures: the average number of Gaussians calculated per time frame,  The final RM model set had 1577 clustered speech states and
and the average decrease in total likelihood of the input per time yersions with a single Gaussian per state and 6 Gaussians per state
frame. This decrease in likelihood represents the sum of the Gausyyere created. The models were tested using the standard word-
sian likelihoods that are not calculated by the algorithm. In tests on pair grammar on the 4 RM speaker independent test sets (feb89,
a HMM system with 9,500 Gaussian mixtures the Roadmap algo- octg9, feh91 and sep92) which each contain 300 utterances.
rithm gave only a 0.004 decrease in log likelihood per frame while  After the MLE models had been created a number of iterations
on average calculating 3.7% of the Gaussians in the system. of FD training were performed on both the single Gaussian and 6
For comparison a number of different schemes of Gaussian se-mixture component systems. Figure 1 shows that the FD objective
lection based on vector quantisation (VQ) techniques, which havefunction increases as training proceeds and gives the changes in
been widely reported in the literature to reduce the number of error rate. Note that the 6-component system shows evidence of
Gaussians computed in an HMM-based speech recognition, wereover-training.
also examined. One such VQ scheme with 256 codebook entries
and using a two level VQ gave an average decrease in log likeli-
hood per frame of 0.3 while computing 4% of the Gaussians inthe |
system.

It is important to know what effect the calculation of only a
fairly small subset of the Gaussians has on the performance of the
trained models, i.e., what loss in total log likelihood is acceptable. Table 1: % word error for single Gaussian RM system with MLE
Experiments showed that there was essentially no loss in recog-and FD training.
nition performance with a reduction in log likelihood per frame
of up to 0.01 and the experiments reported below aimed to keep
the approximation from using the Roadmap algorithm within this
bound.

3.4. Performance

| feb89 | oct89 | feb91 | sep92] overall ]

699 | 768 | 7.49 | 11.61| 8.44
551 | 6.07 | 652 | 8.73 6.73

MLE
FD iter 4

Table 1 and Table 2 show the results of FD on the single and 6
Gaussian per state systems. The single Gaussian system shows an



4.3. Computational Cost of FD

| || feb89 ] oct89 | feb91 | sep92] overall |
MLE 577 1 402 | 330 | 629 2.10 For the experiments above the computational cost of FD is very

FDiter4 | 2.81 | 339 | 2.90 | 5.92 376 impqrtant. As previou_sl_y di_scussed, Fhe most compL_JtationaIIy i_n-
tensive part of FD training is calculating the occupation probabil-
Table 2: % word error for 6 Gaussian per state RM system with ities and finding the_ most likely (_Baussmns in the syster_n. Using
. the Roadmap algorithm, calculation of the these denominator oc-
MLE and FD training . o
cupancies for FD took about five times as long as for the numer-
ator, meaning that this implementation of FD is about five times
6 mixture system an 8.3% reduction. MMIE training procedure discussed in [5] is 15-20 times slower
than MLE (ignoring the time to create the initial word lattices).
Therefore it appears that FD is about three times faster than the
4.2. NAB Experiments lattice based MMIE procedure.

The HMMs used in these experiments were based on the HMM-1
set described in [6]. This decision-tree state-clustered cross-word
triphone set of HMMs had 6399 speech states and was trained us-

: - The paper has reported an implementation of FD training, and in-
ing MLE on the Wall Street Journal SI-284 training set (about 66 . o .
hours of data). Here a version of those models trained on Cep_troduced the Roadmap algorithm which finds the set of most likely

stra derived from Mel frequency perceptual linear prediction (MF- Gaussians in the system and is key to the efficient implementation

PLP) analysis was used. Versions of these models with differentOf FD with large HMM sets. A d'S‘af.‘CE measure for Gaussians
numbers of 1,2,4 and 12 mixture components per state were cre-baseOI on the notion of overlap was introduced and shown to be
ated using MLE, and then for each of these 4 iterations of FD train- very effec_t|ve. . .

ing applied. Experimental results show that FD gives considerable reduc-

tions in word error for simple models and also gives useful in-
The models were tested on the 1994 DARPA Hub-1 develop- : .
ment and evaluation test sets, which are denoted ¢ hid creases in accuracy for more more complex speech models with

csrabilet, using a trigram language model estimated from the more mixture components. The improvements are similar to those
1994 NAB 227 million word text corpus. The same underlying previously reported for MMIE but the FD implementation is con-

HMM set (but trained using MFCCs) was used in [5] to evaluate siderably more computationally efficient.

the performance of lattice-based MMIE so this serves as a useful
point of comparison. 6. REFERENCES
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