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ABSTRACT
For a given set of quantizers and a data vector, the optimal bit
allocation in a rate/distortion sense is the sequence of quantizers
which minimizes the overall distortion for a given bit budget. In
an operational framework, this sequence is dependent on the data
realization rather than on its probabilistic model and the cost of
describing the sequence itself becomes therefore part of the bit
budget. We present an allocation algorithm based on dynamic pro-
gramming which determines the optimal bit allocation taking into
account the side information of describing the structure of the al-
location itself; practical simplifications of the algorithm are also
presented with respect to coding of continuous data sources.

1. INTRODUCTION

Bit allocation is a special case of the more general resource allo-
cation problem in which a limited amount of resources has to be
distributed among several recipients while minimizing a specified
cost functional. In the bit allocation problem we usually have a
set of different quantizers, operating at different bit rates, and a set
of data sources; the goal is to choose a specific quantizer for each
source so that the overall cumulative distortion measure (such as
the MSE) is minimized and the total number of bits is at the same
time below a prescribed bit budget.

The problem can be tackled from within two very different
frameworks. In a probabilistic scenario we assume we possess the
statistical description of each source and the ideal rate/distortion
(R/D) curve of each quantizer. The goal is to design a quantiza-
tion scheme which is asymptotically optimal for the given input
class. Since a quantizer’s R/D curve is generally strictly convex,
the optimal bit allocation can be efficiently found using reverse
water-pouring techniques or variations thereof [1]. The resulting
quantization scheme can be considered “hard wired”, since the de-
sign is done only once for an entire class of input data.

The second approach to resource allocation does away with
statistical descriptions and deals exclusively with the particular
data realization to be quantized. The first fundamental difference
is that in this case we no longer rely on asymptotic R/D quantizer
curves but on a discrete set ofoperationalR/D points specific to
each quantizer-source pair. In other words, the set of distortion
values for each data source must be explicitly computed for all bi-
trates (see [2]). The second main difference is that, in this case, a
description of the final optimal set of quantizers must be supplied
along with the quantized data; this represents an unavoidable cost
in term of effective bit rate, since a part of the overall bit budget
must be spent to encode a sequence of quantizer descriptors. This
cost is obviously data-dependent (imagine using the same quan-
tizer for all sources versus a different quantizer for each source);

true optimality for the allocation requires that this cost be part of
the R/D cost functional in the minimization process and this in turn
introduces dependence between allocation choices. While this sec-
ond approach is definitely more expensive computationally, it can
yield significant performance gains; where bitrate is a premium, it
may very well be worth the extra effort, and this is the case we will
treat in the following sections.

2. THE BIT ALLOCATION PROBLEM

Consider a sequence ofN data“points”xN1 = fx1; x2; : : : ; xNg;
when the first and last subscripts are implicit, the data sequence
will be indicated simply byx. Thexi’s need not be identified with
scalar values, while possibly being such; they are best viewed as
finite subsets of signal samples:(M �M)-pixel image blocks for
instance, or contiguous, non overlapping segments of 1-D signals.
Consider further a set ofP quantizersfqkg, k = 1; : : : ; P where
each quantizer works at integer bitratebk; let dk(xi) be the distor-
tion when quantizing data pointxi with quantizer numberk. Let
k = kN1 be a sequence ofN indices between 1 andP : D(k;x)
will denote the total distortion when coding the entire data vector
with the sequence of quantizers indexed byk; B(k) will denote
the rate associated to the given sequence of quantizers. The op-
timal bit allocation problem for a total bit budget ofB bits can
therefore be formalized as(

min
k

fD(k;x)g

B(k) = B
(1)

When rate and distortion values are independent for different
data points, it is simplyD(k;x) =

P
i dki (xi) andB(k) =P

i bki ; in this case, a well-known algorithm for optimal alloca-
tion was proposed by Shoham and Gersho [3]: minimization of
the global distortion is replaced by anindependentminimization
of the Lagrange cost functionalsJi(�) = dki(xi) + �bki for all
data points, yielding a set of quantizer indices. If, for a given�,
the total corresponding bitrate happens to fulfill the bit budget re-
quirement, then the corresponding set of quantizer is optimal; oth-
erwise the minimization is iterated over different� values until the
optimum is found. This algorithm is efficient but it has a series of
practical drawbacks. First, as with all iterative algorithms, its com-
putation time is non-fixed, depending heavily on the initial guess
for �. Second, each minimization provides the optimal allocation
only for a single total rate and the minimization plus iteration pro-
cess must be repeated if a different rate is desired; furthermore, a
new global iteration is needed if the data vector is extended with
new points. Finally, the algorithm does not work in its original



form if the R/D values are not independent, as in the case of the
side information requirements illustrated in the previous section.

Part of these problems were addressed in [4], where the GB-
FOS algorithm is used to obtain the optimal allocation for all possi-
ble rates simultaneously. The scheme is however designed for a set
of quantizers with contiguous rates and, again, no provisions are
made for side information or data vector extension, which makes
the above algorithms more suitable to a fixed-design problem than
to a strictly data-dependent encoding.

In the rest of this paper we will present a fairly general bit
allocation algorithm based on dynamic programming. While dy-
namic programming is no new tool in this sense (dating back at
least to [5]), it has not been widely used because of its purported
computational complexity; for some examples see [6, 7]. We will
attempt to show however that the dynamic programming frame-
work is not only very flexible and very well suited to the prob-
lem of including side information, but offers practical algorithmic
implementations which trade computational complexity for global
optimality at a linear cost in the number of data points.

3. BIT ALLOCATION WITH SIDE INFORMATION

3.1. Independent Allocation

Let us initially consider the dynamic programming solution for
the case of independent allocation. For any given bit budgetB the
optimal allocationk� is

k
� = arg min

kjB(k)=B
fD(k;x)g (2)

The key observation is that, due to the additivity and non negativity
of rate and distortion values:

min
kn
1
jB(kn

1
)=B

fD(kn1 ; x
n
1 )g = (3)

min
1�j�P

f min
k
n�1
1

jB(kn�1
1

)=B�bj

fD(kn�11 ; xn�11 )g+ dj(xn)g

In other words, the optimal solution at stepn with rateB can be
obtained from the partial solutions at stepn � 1 with rates “one
quantizer away” fromB. The algorithm can be organized on a
trellis [8] as follows: letSn be the set of meaningful states in the
trellis at stepn; each element ofSn is a (r; k; c) triple wherer
is the cumulative rate,k is the last quantizer index, andc is the
cumulative distortion. Then:

Initialization:

1) letS0 = f(0; 0; 0)g;

Allocation:

At each stepn, 1 � n � N

2) letSn = ;;

3) precomputedj(xn) for j = 1; : : : ; P ;

4) for all previous states(r; k; c) 2 Sn�1
for j = 1 toP

compute new cumulative rate:
r0 = r + bj

compute new cumulative distortion:
c0 = c+ dj(xn)

(new state:)

if there is no(r0;m; t) state inSn for anym andt
thenSn = Sn [ f(r

0; j; c0)g
else ifc0 < t (pruning)

thenSn = (Sn n f(r
0; m; t)g) [ f(r0; j; c0)g

connect old state to new state;

Backtracking:

5) select(r; k; c) 2 SN with r = B (or r closest toB)
and collect the quantizer indices following back along the
branches in the trellis;

Please note that in the end not only do we have the optimal
allocation for all rates, but also the optimal allocation for all data
subsetsxj1; j � N ; extending the optimal allocation to a longer
data vector is therefore straightforward.

The computational requirements of the algorithm can be esti-
mated as follows. The computation of the R/D operational points
requires on the order ofPN operations. At each step the num-
ber of trellis operations (sums, comparisons) is proportional to the
number of statesjSnj. A simple estimate for this value is obtained
noticing that, at each step, the number of different states is equal
to the number of reachable rates. The smallest and largest such
rates increase at each step bybmin andbmax respectively, where
bmin andbmax are the rates of the minimum and maximum bitrate
quantizers. The number of intermediate rates is decreased if all bi-
trates share a common factor, in which case only rates multiples of
the factor are reachable. The number of states at stepn is therefore
upper bounded as

jSnj � n
bmax � bmin

GCDjfbjg
+ 1 = n�+ 1: (4)

Summing across all points, for a length-N data vector storage and
computational requirements are therefore proportional to(�=2)(N2 +N) +N .

3.2. Side Information

A data vector encoded with the optimal, data-dependent sequence
of quantizers cannot be decoded unless the description of the se-
quence itself is provided. This description however will use up part
of the total bit budget and therefore the final allocation cannot be
considered truly optimal unless it takes into account the descrip-
tion’s cost. While there are several different way to encode the
quantizer sequence, a simple and effective way is to signalquan-
tizer transitions: each time we switch to a different quantizer, we
send its index. In terms of the allocation process we are introduc-
ing backward dependence in the coding rate of contiguous data
points: suppose the cost of signaling a transition isw bits; for a
quantizerqj applied to data pointxn the distortion is unchanged
but the effective rate isbj or bj +w according to whether the pre-
vious quantizer for data pointxn�1 is alsoqj or not. Luckily, this
kind of dependence is easily integrated in the previous dynamic
programming framework and it determines only an increase in the
size of the state space. Line 4 of the allocation algorithm can be
modified as follows:

4) for all (r; k; c) 2 Sn�1
for j = 1 toP

compute new cumulative rate:
if k = j thenr0 = r + bj

elser0 = r + bj + w
compute new cumulative distortion:

c0 = c+ dj(xn)



(new state)
if there is no(r0; j; t) state inSn for anyt

thenSn = Sn [ f(r0; j; c0)g
else ifc0 < t (pruning)

thenSn = (Sn n f(r
0; j; t)g) [ f(r0; j; c0)g

connect old state to new state;

Note that now we are allowed to prune only between states
with the same rateand the same quantizer index. The increase
in state space size is due to the fact that the rate range at each
step is augmented byw bits and that states with the same rate but
different quantizer index are distinct, which increases the number
of statesP times. The upper bound in (4) remains valid with the
substitution:

� =
P (bmax � bmin +w)

GCDjfbj ; bj +wg
(5)

Please note that, although in this description we assumed that
the cost of a transition is independent of the quantizer, the same
algorithmic procedure can be used if the cost of a transition is
w(i; j), wherei and j are the indices of old and new quantizer.
If some prior information is available about the data which makes
the use of a quantizer more likely than others, this information can
be usefully incorporated inw(i; j) to minimize side information.
Similarly, unequal transition costs can be used in perceptual cod-
ing to penalize the use of discontinuities in modeling.

It is worthwhile to note at this point that we have not specified
how the description of the allocation and the quantized data are to
be merged in a single bitstream; this relates to the chosen commu-
nication protocol between encoder and decoder and is outside the
scope of this paper. For an example of how to address the problem
see for instance [9].

4. IMPLEMENTATION ISSUES

In the following section we will illustrate some implementation
strategies which reduce the complexity of the algorithm in most
practical cases. To facilitate the discussion, we will make use of a
graphical representation of the trellis based on itscontinuous ap-
proximation. First of all notice that the quantizer rates can be nor-
malized so that they are coprime and that the smallest rate is zero.
In this case at each stepn the minimum rate is zero and the max-
imum rate isn(qmax � qmin) = n�. With this normalization,
any trellis can be represented graphically as a wedge (see Fig. 1):
the step numbern runs along thex-axis while the rater is plotted
along they-axis (pointing downwards); the slope of the wedge is
simply�. In the continuous approximation we considern andr as
real valued quantities; this allows us to infer estimates on the num-
ber of states as surface measures: the number of states in Fig. 1 is
N2�=2, which, for a moderately dense set of quantizers, is very
close to the bound in (4) summed over all steps.

N

N∆

0
0 step

rate

Nρ

Figure 1: Continuous approximation for the trellis.

4.1. Zooming in

In most compression applications, we are concerned with one par-
ticular bit rate or at most with a narrow range of rates around a
given bit budget. The trellis structure allows us to “zoom in” to the
range of interest, reducing the total number of trellis states (and of
operation) toO(N).

Suppose we are interested in bit rate ofB at the final step
N . At each intermediate stepn, it is enough to keep only those
states whose rater satisfiesB � (N � n)� � r � B; trellis
paths through all other states will either undershoot or overshoot
the target rate. This is represented in Fig. 3-(a); the total number of
meaningful states for the trellis is proportional to the shaded area
W in the wedge, yielding

W = B(N �B=�): (6)

Similarly, if we zoom in on a range of rates betweenBmin and
Bmax (see Fig. 3-(b)), the number of states is proportional toW =
Bmax(N �Bmin=�).

B

B
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min
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Figure 3: Zooming in: (a) single rate; (b) rate interval.

4.2. Block-by-block and continuous coding

Two classes of applications require us to terminate the trellis search
before the global optimum is found; this happens when either the
size of the data vector size is unknown a priori or it imposes storage
requirements which are too large, or when there is a limit on the
processing delay before quantization and encoding of data points.
In both cases, the rate requirement can only be formulated in terms
of an average bitrate of� bits/symbol, withqmin � � � qmax; in
the graphical representation the target bitrate becomes a line of
slope�, as in Fig. 1.

A first approach is to partition the data into size-L contiguous
blocks and run the “zoom in” algorithm separately for each block
for a target rateB = �L. The resulting trellis configuration is
displayed in Fig. 4-(a).

A second approach, more in line with standard trellis practice,
is the following. Assume we start building the trellis up ton =
L + 1, at which point we backtrackL steps and find thelocally
optimal path for rateB = (L + 1)�. For a sufficiently largeL,
we can assume thats1 = (r1; k1; c1), the initial state of this path
at n = 1, is actually the initial state of theglobally optimal path
and we can encode and send the associated first data point using
quantizerk1. If s1 is indeed optimal, the globally optimal path will
unwind inside a wedge starting ats1 even if the globally optimal
and the locally optimal path afterwards differ in all states but the
first one. This means that at stepL + 2 we need only update the
states inSL+1 whose rater satisfies

Lqmin � r � r1 � Lqmax (7)



optimal
block
continuous

Figure 2: Block by block and continous coding solutions.

which requires on the order ofL operations and generatesL�+1
new states. At the next step the process is repeated, and in general,
at stepn > L we backtrackL steps from rateBn = n�, encode
the point with the quantizerkn�L associated to statesn�L, and
update the subset of states inSn for whichLqmin � rn�rn�L �
Lqmax. Finally, to ensure stability we only need to show that at
each step the target rateBn is within the new reduced set of states
Sn. This can be shown by induction: assume the proposition holds
at stepn; we backtrack and find the locally optimal ratern�L.
Now, it must bern�L+Lqmax � Bn � rn�L+Lqmin, otherwise
Bn would not be reachable inL steps fromrn�L. At stepn+1 it
isBn+1 = Bn + � and sinceqmin � � � qmax, it is also

rn�L + Lqmax + qmax � Bn+1 � rn�L + Lqmin + qmin

and it is immediate to recognize in the two outer terms of the in-
equality the maximum and minimum rates inSn+1.

L0

nρ

Figure 4: Continuous coding: (a) block by block; (b) backtracking.

The storage and computational costs of the algorithm are clearly
linear inn. A graphical representation of the resulting “tiled wedges”
is displayed in Fig. 4-(b). For both strategies, the resulting sub-
optimality is heavily dependent onL. In the block by block ap-
proach, the bitrate requirement is followed exactly over length-L
segments; the price we pay is a high distortion if the block size is
small compared to the rate of change of the signal. The continuous
coding approach follows the optimal path more closely but usually
does not yield a constant bitrate over fixed blocks. Both methods
also introduce “out of budget” side information; while in the block
algorithm however this happens only at each block boundary, in
the continuous algorithm continuity of states is not preserved and
the price can be substantially higher. The best tradeoff is obvi-
ously dependent on the quantization problem and on the data, and
it must be necessarily tested “on the field”. A numeric example
is displayed in Fig. 2: a synthetic 500-point data vector is gener-
ated by a iid random number generator whose variance switches

between� and� according to a Poisson process with� = 0:01.
Two quantizers, 8 and 16 bits, are matched to� and� and the cost
of side information is 8 bits. The solid line represents the globally
optimal path for a target bitrate of 4 bits/point, while the circles
and the diamonds represent the block and continuous coding so-
lutions forL = 150. Marks on the upper line indicate the switch
points in the data source.

5. CONCLUSIONS

We presented in its general form an algorithm for optimal bit allo-
cation using dynamic programming which takes into account the
cost of describing the allocation itself to the decoder. While the
global optimum for a length-N data vector requires on the order of
N2 operations, in most practical cases the algorithm’s complexity
can be reduced to linear. Current research is under way towards
minimum-delay applications in audio coding [10]; for upcoming
results, please refer to:
http://lcavwww.epfl.ch/˜prandoni/optimal.html
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