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ABSTRACT true optimality for the allocation requires that this cost be part of
For a given set of quantizers and a data vector, the optimal bitthe R/D cost functional in the minimization process and this in turn
allocation in a rate/distortion sense is the sequence of quantizerdntroduces dependence between allocation choices. While this sec-
which minimizes the overall distortion for a given bit budget. In ond approach is definitely more expensive computationally, it can
an operational framework, this sequence is dependent on the datyield significant performance gains; where bitrate is a premium, it
realization rather than on its probabilistic model and the cost of may very well be worth the extra effort, and this is the case we will
describing the sequence itself becomes therefore part of the bittreat in the following sections.
budget. We present an allocation algorithm based on dynamic pro-
gramming which determines the optimal bit allocation taking into
account the side information of describing the structure of the al-
location itself; practical simplifications of the algorithm are also
presented with respect to coding of continuous data sources.

2. THE BIT ALLOCATION PROBLEM

Consider a sequence df data“points"z = {z1,z2,... ,2n};

when the first and last subscripts are implicit, the data sequence
will be indicated simply bye. Thez;’s need not be identified with
scalar values, while possibly being such; they are best viewed as
finite subsets of signal samplgsi/ x M )-pixel image blocks for
instance, or contiguous, non overlapping segments of 1-D signals.
Consider further a set d? quantizers{gr}, k =1, ... , P where
each quantizer works at integer bitraig let dx.(x;) be the distor-

1. INTRODUCTION

Bit allocation is a special case of the more general resource allo-
cation problem in which a limited amount of resources has to be
distributed among several recipients while minimizing a specified
cost functional. In the bit allocation problem we usually have a s . : :
. . . . . tion when quantizing data poiat; with quantizer numbek. Let
set of different quantizers, operating at different bit rates, and a set N S .
g i e - = k1' be a sequence d¥ indices between 1 an®: D(k, x)
of data sources; the goal is to choose a specific quantizer for each’. : . . .
- . X will denote the total distortion when coding the entire data vector
source so that the overall cumulative distortion measure (such as . h th f ! indexed i d
the MSE) is minimized and the total number of bits is at the same with the sequence of quantizers indexe KoyB (k) will denote
. - . the rate associated to the given sequence of quantizers. The op-
time below a prescribed bit budget.

The problem can be tackled from within two very different timal bit allocation _problem for a total bit budget & bits can
frameworks. In a probabilistic scenario we assume we possess théherefore be formalized as
p p
statistical description of each source and the ideal rate/distortion min{D(k, z)}
(R/D) curve of each quantizer. The goal is to design a quantiza- ke ’
tion scheme which is asymptotically optimal for the given input {
class. Since a quantizer’s R/D curve is generally strictly convex,
the optimal bit allocation can be efficiently found using reverse When rate and distortion values are independent for different
water-pouring techniques or variations thereof [1]. The resulting data points, it is simplyD(k,x) = >, d, (z;) and B(k) =
guantization scheme can be considered “hard wired”, since the de-), by, ; in this case, a well-known algorithm for optimal alloca-
sign is done only once for an entire class of input data. tion was proposed by Shoham and Gersho [3]: minimization of
The second approach to resource allocation does away withthe global distortion is replaced by @amdependenminimization
statistical descriptions and deals exclusively with the particular of the Lagrange cost functionalg(\) = di; (x;) + Aby, for all
data realization to be quantized. The first fundamental difference data points, yielding a set of quantizer indices. If, for a gien
is that in this case we no longer rely on asymptotic R/D quantizer the total corresponding bitrate happens to fulfill the bit budget re-
curves but on a discrete set @perationalR/D points specific to quirement, then the corresponding set of quantizer is optimal; oth-
each quantizer-source pair. In other words, the set of distortion erwise the minimization is iterated over differenvalues until the
values for each data source must be explicitly computed for all bi- optimum is found. This algorithm is efficient but it has a series of
trates (see [2]). The second main difference is that, in this case, apractical drawbacks. First, as with all iterative algorithms, its com-
description of the final optimal set of quantizers must be supplied putation time is non-fixed, depending heavily on the initial guess
along with the quantized data; this represents an unavoidable cosfor A\. Second, each minimization provides the optimal allocation
in term of effective bit rate, since a part of the overall bit budget only for a single total rate and the minimization plus iteration pro-
must be spent to encode a sequence of quantizer descriptors. Thisess must be repeated if a different rate is desired; furthermore, a
cost is obviously data-dependent (imagine using the same quannew global iteration is needed if the data vector is extended with
tizer for all sources versus a different quantizer for each source); new points. Finally, the algorithm does not work in its original

B(k) =B )



form if the R/D values are not independent, as in the case of the if there is no(r’, m, t) state inS,, for anym andt¢

side information requirements illustrated in the previous section. thenS, = S, U{(r',j,¢")}

Part of these problems were addressed in [4], where the GB- else ifc’ < t (pruning
FOS algorithm is used to obtain the optimal allocation for all possi- thenS, = (S» \ {(',m, ) }) U{(r',4,¢)}
ble rates simultaneously. The scheme is however designed for a set connect old state to new state;

of quantizers with contiguous rates and, again, no provisions are
made for side information or data vector extension, which makes _
the above algorithms more suitable to a fixed-design problem than ~ 5) select(r,k,c) € Sy with » = B (or r closest toB)

Backtracking:

to a strictly data-dependent encoding. and collect the quantizer indices following back along the
In the rest of this paper we will present a fairly general bit branches in the trellis;
allocation algorithm based on dynamic programming. While dy- Please note that in the end not only do we have the optimal

namic programming is no new tool in this sense (dating back at 4jpcation for all rates, but also the optimal allocation for all data
least to [5]), it has not been widely used because of its purportedsubsetsvyl,j < N; extending the optimal allocation to a longer
computational complexity; for some examples see [6, 7]. We will 45t vector is therefore straightforward.

attempt to show however that the dynamic programming frame-
work is not only very flexible and very well suited to the prob-
lem of including side information, but offers practical algorithmic
implementations which trade computational complexity for global
optimality at a linear cost in the number of data points.

The computational requirements of the algorithm can be esti-
mated as follows. The computation of the R/D operational points
requires on the order aP N operations. At each step the num-
ber of trellis operations (sums, comparisons) is proportional to the
number of stategS,, |. A simple estimate for this value is obtained
noticing that, at each step, the number of different states is equal

3. BIT ALLOCATION WITH SIDE INFORMATION to the number of reachable rates. The smallest and largest such
rates increase at each stepiyi, andbmax respectively, where
3.1. Independent Allocation bmin @andbmax are the rates of the minimum and maximum bitrate

quantizers. The number of intermediate rates is decreased if all bi-
trates share a common factor, in which case only rates multiples of
the factor are reachable. The number of states atstefherefore
upper bounded as

Let us initially consider the dynamic programming solution for
the case of independent allocation. For any given bit bufigiie
optimal allocationk™ is

k™ =arg min {D(k,z)} 2 o
KIB(k)=B 1S0] < nibggD_ {’;ff‘ij‘ +1=nA+1. @

The key observation is that, due to the additivity and non negativity T
of rate and distortion values: Summing across all points, for a lengt-data vector storage and

] . computational requirements are therefore proportionah®)(N? + N) 4+ N.

min  {D(k{,z7)} = 3)

k}|B(k})=B . .

min_{ min (DY, 22N + dj ()} 3.2. Side Information

<j<P "pn-—-1 n—1y__ . . .
ISISE R T BT =B, A data vector encoded with the optimal, data-dependent sequence

of quantizers cannot be decoded unless the description of the se-
quence itself is provided. This description however will use up part
of the total bit budget and therefore the final allocation cannot be
considered truly optimal unless it takes into account the descrip-
tion’s cost. While there are several different way to encode the
guantizer sequence, a simple and effective way is to Sigumeah-

tizer transitions each time we switch to a different quantizer, we
send its index. In terms of the allocation process we are introduc-
ing backward dependence in the coding rate of contiguous data

In other words, the optimal solution at stepwith rate B can be
obtained from the partial solutions at step- 1 with rates “one
quantizer away” fromB. The algorithm can be organized on a
trellis [8] as follows: letS,, be the set of meaningful states in the
trellis at stepn; each element of,, is a(r, k, ¢) triple wherer

is the cumulative ratek is the last quantizer index, andis the
cumulative distortion. Then:

Initialization: ) . ) e

points: suppose the cost of signaling a transitiowibits; for a
1) letSo = {(0,0,0)}; quantizerg; applied to data point,, the distortion is unchanged
Allocation: but the effective rate i; or b; + w according to whether the pre-

vious quantizer for data poiat,— is alsog; or not. Luckily, this

Ateachstep, 1 <n < N kind of dependence is easily integrated in the previous dynamic

2) letS, =0; programming framework and it determines only an increase in the
3) precomputel;(z,)forj =1,... ,P; size of the state space. Line 4 of the allocation algorithm can be
, modified as follows:
4) for all previous stategr, k,c) € Sn—1
forj=1to P 4) forall (r,k,c) € Sp—1
compute new cumulative rate: forj=1toP
r'=r+b; compute new cumulative rate:
compute new cumulative distortion: if k=jthenr’ =r +0;
d =c+dj(zs) elser' =r+b; +w

compute new cumulative distortion:
(new state} ¢ =c+dj(za)



(new statg 4.1. Zooming in

if there is no(r’, 4, t) state inS,, for anyt | t ) licati d with
thenS, = S, U {(, 4, &)} n most compression applications, we are concerned with one par-

else if¢’ < ¢ (pruning ti_cular pit rate or at most_ with a narrow range of rates _around a
thensS, = (S» \ {(, 5, )} U {(r', j, &)} given bit pudget. The trellls structure allows us to “zoomin”to the

range of interest, reducing the total number of trellis states (and of

operation) taO(N).

Note that now we are allowed to prune only between states _ SUpPose we are interested in bit rate/dfat the final step

with the same ratand the same quantizer index. The increase V- At each intermediate step, it is enough to keep only those

in state space size is due to the fact that the rate range at eacRtates whose rate satisfiesB — (N —n)A < r < B, trellis

step is augmented hy bits and that states with the same rate but paths through all pther states will (_althgr undershoot or overshoot

different quantizer index are distinct, which increases the number the targetrate. This is represented in Fig. 3-(a); the total number of

of statesP times. The upper bound in (4) remains valid with the meaningful states for the trellis is proportional to the shaded area
substitution: W in the wedge, yielding

P(bmax - bmin + ’LU) (5) W= B(N - B/A) (6)
GCD;{b;j,b; + w}

connect old state to new state;

A =

Similarly, if we zoom in on a range of rates betweBg,;, and

o L Bmax (see Fig. 3-(b)), the number of states is proportion&ite=
Please note that, although in this description we assumed thathax(N — Buin/A).

the cost of a transition is independent of the quantizer, the same
algorithmic procedure can be used if the cost of a transition is o N

w(i, ), wheres and j are the indices of old and new quantizer.

If some prior information is available about the data which makes

the use of a quantizer more likely than others, this information can | =

be usefully incorporated iw(i, 7) to minimize side information.

Similarly, unequal transition costs can be used in perceptual cod-

ing to penalize the use of discontinuities in modeling. \ i
It is worthwhile to note at this point that we have not specified .

how the description of the allocation and the quantized data are to
be merged in a single bitstream; this relates to the chosen commu- ) o ) )
nication protocol between encoder and decoder and is outside the ~ Figure 3: Zooming in: (a) single rate; (b) rate interval.
scope of this paper. For an example of how to address the problem
see for instance [9].

4.2. Block-by-block and continuous coding

4. IMPLEMENTATION ISSUES Two classes of applications require us to terminate the trellis search
before the global optimum is found; this happens when either the

In the following section we will illustrate some implementation size of the data vector size is unknown a priori or itimposes storage
strategies which reduce the complexity of the algorithm in most requirements which are too large, or when there is a limit on the
practical cases. To facilitate the discussion, we will make use of a processing delay before quantization and encoding of data points.
graphical representation of the trellis based orcdstinuous ap- In both cases, the rate requirement can only be formulated in terms
proximation First of all notice that the quantizer rates can be nor- of an average bitrate ¢f bits/symbol, withgmin < p < gmae; in
malized so that they are coprime and that the smallest rate is zerothe graphical representation the target bitrate becomes a line of
In this case at each stepthe minimum rate is zero and the max- slopep, as in Fig. 1.
imum rate isn(gmax — gmin) = nA. With this normalization, A first approach is to partition the data into sizezontiguous
any trellis can be represented graphically as a wedge (see Fig. 1)blocks and run the “zoom in” algorithm separately for each block
the step numben runs along the:-axis while the rate is plotted for a target rateB = pL. The resulting trellis configuration is
along they-axis (pointing downwards); the slope of the wedge is displayed in Fig. 4-(a).
simply A. In the continuous approximation we consigeandr as A second approach, more in line with standard trellis practice,
real valued quantities; this allows us to infer estimates on the num-is the following. Assume we start building the trellis uprto=
ber of states as surface measures: the number of states in Fig. 1 i& + 1, at which point we backtrack steps and find théocally
N?A/2, which, for a moderately dense set of quantizers, is very optimal path for rateB = (L + 1)p. For a sufficiently large’,

close to the bound in (4) summed over all steps. we can assume that = (r1, k1, c1), the initial state of this path
atn = 1, is actually the initial state of thglobally optimal path
L, ° step N and we can encode and send the associated first data point using

-------------------------------- quantizerk; . If s, isindeed optimal, the globally optimal path will

unwind inside a wedge starting &t even if the globally optimal
and the locally optimal path afterwards differ in all states but the
first one. This means that at stép+ 2 we need only update the
states inSt+1 whose rate- satisfies

£

Figure 1: Continuous approximation for the trellis.
LQmin S r—ri S LQmax (7)
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Figure 2: Block by block and continous coding solutions.

which requires on the order @f operations and generatéa\ + 1 betweena and 3 according to a Poisson process with= 0.01.

new states. At the next step the process is repeated, and in generalwo quantizers, 8 and 16 bits, are matched @ndg and the cost

at stepn > L we backtrackL steps from rate3,, = np, encode of side information is 8 bits. The solid line represents the globally
the point with the quantizek, _; associated to state,—r, and optimal path for a target bitrate of 4 bits/point, while the circles
update the subset of statesdp for which Lgmin < 7 —rn—r < and the diamonds represent the block and continuous coding so-
Lgmax. Finally, to ensure stability we only need to show that at lutions for L = 150. Marks on the upper line indicate the switch
each step the target rai®, is within the new reduced set of states points in the data source.

Sn». This can be shown by induction: assume the proposition holds

at stepn; we backtrack and find the locally optimal ratg_r.. 5. CONCLUSIONS
Now, it must be,,— 1 + Lgmax < Bn < 7n—r1 + L@min, Otherwise . ) ) .
B, would not be reachable ib steps fromr,,_ .. At stepn + 1 it We_ prese_nted inits general form_an algprlthm for _optlmal bit allo-
iS Byy1 = By + p and SiNCmin < p < gmax, itis also cation using dynamic programming which takes into account the
- cost of describing the allocation itself to the decoder. While the
Pr—L + Lmax + gmax < Bn41 < Fn-r + Lgmin + gmin global optimum for a lengtlV data vector requires on the order of

N? operations, in most practical cases the algorithm’s complexity
and it is immediate to recognize in the two outer terms of the in- ¢an be reduced to linear. Current research is under way towards
equality the maximum and minimum ratesSf 1. minimum-delay applications in audio coding [10]; for upcoming
results, please refer to:
http://lcavwww.epfl.ch/"prandoni/optimal.html
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