
A FLOATING-POINT TO INTEGER C CONVERTER
WITH SHIFT REDUCTION FOR FIXED-POINT DIGITAL

SIGNAL PROCESSORS
Ki-Il Kum, Jiyang Kang and Wonyong Sung

School of Electrical Engineering, Seoul National University
Kwanak-gu, Seoul 151-742 KOREA

ABSTRACT
A floating-point to integer C program translator is developed for
convenient programming and efficient use of fixed-point
programmable digital signal processors (DSP’s). It not only
converts data types and supports automatic scaling, but also
conducts shift optimization to enhance execution speed. Since
the input and output of this translator are ANSI C compliant
programs, it can be used for any fixed-point DSP that supports
ANSI C compiler. A shift reduction method is developed for
minimizing the scaling overhead of translated integer C
programs. It considers the data-path of a target processor and
profiling results. Using the shift reduction method, 4% to 37 %
speedup is obtained. The translated integer C codes are 20 to
400 times faster than the floating-point versions when applied to
TMS320C50, TMS320C60 and Motorola 56000 DSP’s.

1. INTRODUCTION

Although the use of high-level languages for programmable
digital signal processors is important in reducing the
development time and retaining the portability, C compilers for
fixed-point digital signal processors have met with little
acceptance, especially because of the overhead of executing
floating-point operations using a fixed-point data-path [1]. The
development of fixed-point programs is considered tedious and
difficult because it requires appropriate scaling for each data
move and arithmetic operation to prevent overflows while
maintaining accuracy [2][3]. The converter developed in this
work, Autoscaler for C, can solve these problems because not
only does it allow a programmer to avoid time-consuming
assembly coding and manual scaling but also the translated C
programs are executed very efficiently in fixed-point digital
signal processors.

There are several recent research works for the automatic scaling
and fixed-point implementation of general digital signal
processing algorithms, such as the autoscaling assembler for
TMS320C25 ('C25) [2][3], the fixed-point optimization utility
for C and C++ based digital signal processing programs [4]-[6],
the fixed-point C compilers for TMS320C50 ('C50) [7]. These
tools still require assembly coding or source code modification
because they do not support ANSI C language. However the
developed Autoscaler for C accepts ANSI C based floating-point
application programs, and generates ANSI C compliant programs
including target specific codes. It also performs target dependent
scaling shift minimization.

Figure 1 shows the design flow using the Autoscaler for C. First,
the ranges of floating point variables are estimated by the

simulation of the range estimation program that is automatically
generated from the original floating-point version. The integer
word-lengths, which are the number of bits used for the integer
part, of the fixed-point variables are initially determined using
the range estimation results. Second, the integer word-length of
each variable is optimized to minimize the number of scaling
shift operations using a data-path specific cost function. The
simulated annealing algorithm is used for this shift-reduction.
Finally, the floating-point variables and constants are replaced by
the corresponding integer types, and appropriate scaling codes
are inserted. The SUIF (Stanford University Intermediate
Format) compiler system is used for source program parsing,
analyzing, converting and generating the target programs [8].

Floating point C code

Syntax analysisProfilingRange estimation
IWL annotator

Shift optimization

Integer C code
generation

Integer C code

IWL informationIWL check

Shift reduction
Code conversion

Figure 1. The floating-point to integer C converter design flow.

2. SIMULATION-BASED INTEGER
WORD-LENGTH DETERMINATION

The fixed-point data format employed for this translator consists
of sign, integer and fractional bits. The number of bits assigned
to the integer is called the integer word-length (IWL), and that
assigned to the fraction is the fractional word-length (FWL).
Thus, the word-length (WL) corresponds to IWL+FWL+1. The
range (R) and the quantization step (Q) are dependent on the
IWL and FWL, respectively: -2IWL ≤ R < 2IWL and Q = 2-FWL

=2-(WL-1-IWL). Assigning a large IWL to a variable can prevent
overflows, but it increases the quantization noise. Thus, the
minimum IWL for a variable x, IWLmin(x), can be determined
according to its range, R(x), as follows.

)(log)(2min xRxIWL = , (1)

where x denotes the smallest integer which is equal to or

greater than x. A simulation based range estimation method was
developed, where the range of each signal is measured during the
floating-point simulation using realistic input signal files [4][5].
It employs the C++ class that traces the statistic information. It
can be used for most algorithms described with C or C++ by
simply replacing the float types with the range estimating C++
class. However, it cannot be applied to programs that have
recursive functions, because the C++ class should be statically
declared for collecting the statistical information, while the local
variables in recursive functions are automatically declared and
reside in stack frames [9]. Instead of the C++ class based method,
a range estimation approach that uses a function call is employed
for this study. It modifies the original C program by inserting a
function call after every assignment statement. In this function,
range(), the maximum absolute value, the sum, the squared sum
and the number of assignments of a variable are traced. The
function call insertion method is not only applicable to programs
having recursive function calls, but also about 2.7 times faster
than our previous C++ class based range estimation method as
compared in Table 1. The execution time was measured using a
Sun Ultra 1 workstation.

Table. 1. Comparison of execution time.

Program original
C code

C++ based
range
estimation

C based
range
estimation

IIR1
(1000000 samples)

0.22s 4.95s 1.88s

IIR4
 (1000000 samples)

1.03s 25.99s 9.59s

QCELP
 (32640 samples)

8.58s - 45.73s

The range estimation code is automatically generated as follows.
First, it finds all of the floating-point variables by examining the
symbol tables of the source program, and assigns a unique
identification number to each floating-point variable. The
identification numbers are attached to the corresponding
variables in the symbol tables using the annotation function of
the SUIF. Second, it traverses all of the expression trees and
inserts the range() function call after every floating-point
assignment. The range estimating program has a table that stores
the maximum absolute value, the sum, the squared sum and the
number of assignment of all the floating-point variables. In the
function range(), the table elements indexed by the identification
number are modified with the assigned value. The statistics are
reported when program execution is completed.

3. CODE CONVERSION
Arithmetic and assignment operations for fixed-point variables or
constants need scaling operations [2][3]. For example, a variable
x having an IWL of 2 cannot be added directly to a variable y
with an IWL of 1. The variable y should be shifted right by 1 bit
before addition to align the binary-point. Note that the IWL of a
variable is increased by the arithmetic right shift operation. If the
IWL of the added result is greater than both IWL’s of two input
operands, the inputs should be scaled down to prevent overflows.
Therefore, the scaling for addition is performed as shown in
Table 2.

For fixed-point multiplication, it is important for preventing
overflows to keep the upper part of the double precision
multiplied result although integer multiplication in ANSI C only
stores the lower part [7]. Since two’s complement multiplication
generates two sign bits, the IWL of the multiplied result becomes
Ix + Iy +1, where Ix and Iy are the IWL’s of two input operands x
and y, respectively. In traditional C compilers, double precision
multiplication followed by a double to single conversion is
needed to obtain the upper part, which is obviously very
inefficient [1]. However, in recent C compilers for some digital
signal processors such as ’C50, the upper part of the multiplied
result can be obtained by combining multiply and shift
operations [10]. In the case of TMS320C60 (’C60), which has
32-bit registers and ALU’s, but only 16 by 16-bit multipliers, the
multiplication of the upper 16-bit of two 32-bit operands is
efficiently supported by C intrinsics [11]. If there is no support
for obtaining the upper part of the multiplied result in the C
compiler level, an assembly level implementation of fixed-point
multiplication is required. For Motorola 56000 processor, fixed-
point multiplication can be implemented with a single instruction
using inline assembly coding [12]. The implementation of the
macro or inline function for fixed-point multiplication, mulh(), is
dependent on the compiler of a target processor.

Table 2. Fixed-point arithmetic rules.

fixed-pointfloating-
point Ix>Iy,Iz Iy>Ix,Iz Iz>Ix,Iy

result
IWL

x = y x =
y>>(Ix-Iy)

x =
y<<(Iy-Ix)

- Ix

x+y x+
(y>>(Ix-Iy))

(x>>(Iy-
Ix))+y

(x>>(Iz-Ix))+
(y>>(Iz-Iy))

max(Ix,
Iy,Iz)

x*y mulh(x,y) Ix+Iy+1
or Ix+Iy

z: variable that stores added result

The elements of an array variable are assumed to have the same
IWL for simple code generation. For a pointer variable, the IWL
is defined as that of the pointed variables. Since the IWL of a
pointer variable is not changed at runtime, a pointer cannot
support two variables having different IWL’s. In this case, the
IWL’s of these pointers are equalized automatically at the shift
optimization step.

4. SHIFT REDUCTION

Since a scaling is not needed for addition or assignment of
operands having the same IWL, the number of scaling shifts can
be reduced by equalizing the IWL’s of relevant variables. Note
that it is only allowed to increase the initial IWL’s that are
determined according to Eq. (1). Shift reduction requires global
optimization since the IWL modification of a variable in an
expression can incur more scaling shifts in other expressions.
Shift optimization also depends on the architecture of the target
DSP. If it has a barrel shifter, the number of shift bits does not
affect the cycle time. However, if it has no barrel shifter and
should conduct the scaling using one-bit shift operations, the
shift overhead is also affected by the number of bits for a scaling
operation. It is also needed for minimizing the execution time to
reduce the scaling operations that are inside a long loop. Thus,
this optimization requires program-profiling results.

The IWL modification that minimizes the overhead for scaling is
conducted as follows. First, the number of shift bits for each
expression is formulated with the IWL’s of the relevant variables
and constants. Second, the cost function that corresponds to the
total overhead of scaling shifts is made based on the results of the
first step, the target DSP architecture and the program-profiling
information. Finally, the cost function is minimized by
modifying the IWL’s using the simulated annealing algorithms.

For a simple modeling, a floating-point expression is converted
to several simple expressions having following form.

∑∑ +∗=
l

l
kj

kji xxxx
,

(2)

This expression will be converted to an integer expression with
scaling shift insertion as follows.

i
l

ll
kj

kjkji ssxsxxx <<>>+>>∗= ∑∑)}())(({
,

,
(3)

The shift amounts, sj,k, sl and si are determined as follows.

),,1(max
,, ilkj xxxx
lkj

rhs IIIII ++= (4)

)1(, ++−=
kj xxrhskj IIIs (5)

lxrhsl IIs −= (6)

xirhsi IIs −= , (7)

where Ix is the IWL of the variable x and Irhs is the IWL of the
right hand side expression.

For a DSP architecture without a barrel shifter such as Motorola
56000, total number of bits for shift operation is the overhead of
scaling shifts. It is determined as:

∑ ∑+=
i

i
j

jiit nedc)(,
 , (8)

where ei,j is the shift amount for the j-th term of the i-th
expression, di is that for the assignment of the i-th expression and
ni is the number of execution counts of the i-th expression. The
weight, ni, is determined from the profiling results. For a DSP
having barrel shifters, such as ’C25, ’C50 and ’C60, the number of
scaling shift operations that are not zero is counted. The cost
function is represented as follows.

∑ ∑+=
i

i
j

jiBiBt nefdfc))()((, , (9)

where fB(x) is zero when x is zero, and is one when otherwise.
This means that no shift is needed when the number of shift bits
is zero, and only one shift operation is needed when that is not
zero.

The cost functions shown in Eq. (8) and (9) are minimized by
modifying the IWL’s with the following constraints. The first
constraint is the IWL lower bound, which is determined by the
range estimation. The second constraint is the IWL upper bound,
which is required for avoiding a significant performance
degradation. The third constraint is the IWL equality condition of
pointer and array variables. As explained before, the variables
sharing the same pointer should have the equal IWL. When a
function has pointer or array variables in its parameters, the

variables in the caller side and the callee side should have the
same IWL also. The cost functions can be minimized using
general optimization methods such as the simulated annealing
algorithm [13].

Shift optimizer reads the IWL information file generated in the
range estimation step, and writes back the optimized IWL
information after minimizing the number of shifts. The
implementation of the shift reduction program consists of three
parts: source code profiling, syntax analysis and shift optimizing.
The source code profiling collects the execution frequencies of
floating-point expressions throughout the simulation of the
profiling program that is automatically generated. The syntax
analyzing part extracts the equations for the calculations of scale
amounts and the IWL equality condition by analyzing the
floating-point C program. The extracted information includes the
simplified parse tree for floating-point expressions and the IWL
equality constraints. The shift optimizer part generates a C
program conducting the simulated annealing optimization with
the syntax analysis results, the profiling results, and the initial
IWL’s.

5. IMPLEMENTATION EXAMPLES

5.1 Fourth order IIR filter

A part of the floating-point C code and the converted integer C
code for this example are shown in Fig. 2.

 x1 = 0.01* *x;
 t1 = x1 + b1[0]*d1[0] + b1[1]*d1[1];
 y1 = a1[0]*t1 + a1[1]*d1[0] + a1[2]*d1[1];

(a) The floating-point C code.

 x1 = mulh(1374389534, *x)<<1;
 t1=((x1>>5)+mulh(*b1,*d1)+mulh(b1[1],d1[1]))<<2;
 y1=(mulh(*a1,t1)+mulh(a1[1],*d1)+
 mulh(a1[2],d1[1]))<<1;

(b) The integer C code before shift reduction.

 x1=mulh(1374389534,*x);
 t1=(x1+mulh(*b1,*d1)+mulh(b1[1],d1[1]))<<2;
 y1=mulh(*a1,t1)+mulh(a1[1],*d1)+
 mulh(a1[2],d1[1]);

(c) The integer C code after shift reduction.

Figure 2. The C codes for the fourth order IIR filter.

Note that the floating-point constant of 0.01 is converted to 32
bit integer constant of 1374389534 with IWL of –6. The IWL’s
of the variable x, x1, t1, d1, a1, b1, and y1 are determined as 16,
9, 12, 12, 1, 1, and 13, respectively by the simulation based range
estimation. The integer C code generated using these IWL’s is
shown in Fig. 2-(b). In this example, the speedup, which is the
ratio in the execution time of the integer to the floating-point
versions, was 29.8, 406, and 28.5 for 'C50, 'C60, and Motorola
56000, respectively, as shown in Table 3. The remarkable
speedup of 'C60 is mainly due to the deeply pipelined VLIW
architecture having a large register file and the efficient C
compiler. This machine can execute up to 8 integer operations in
one cycle and store all the variables of a small loop kernel in the
registers, but needs a large number of no-operation cycles for
floating-point function calls to flush the pipeline registers.

The developed shift reduction technique is applied to this
example. The IWL’s of the variables x, x1, and y are changed to
19, 14, and 14, respectively. Two scaling shifts are removed as
shown in the Fig. 2-(c). The total number of shift operations in
the whole C code is reduced from 7 to 2 with the IWL upper
bound of 3 bits. The shift reduction results are shown in Table 4.

 Table 3. Performance comparison for the fourth order IIR filter.

of cycles SQNR

floating-p. integer speedup integer

'C50 2,980 100 29.8 49.3dB

'C60 3,659 9 406.6 57.9dB

56000 26,282 921 28.5 78.5dB

Table 4. The shift reduction results of the fourth order IIR filter.

before
shift reduction

after
shift reduction

of shifts in C codes 7 2
of cycles 100 94
speedup - 6%

’C50

SQNR 49.3dB 54.1dB
of cycles 9 6
speedup - 33%

’C60

SQNR 57.9dB 54.2dB
of shifts in C codes 5 2

of cycles 921 577
speedup - 37%

56000

SQNR 78.5dB 78.5dB

5.2 QCELP Codec

The QCELP algorithm developed by Qualcomm [14] is
implemented using TI's 'C60. This C program consists of 16
source and 4 header files having a total of 3648 lines. It has 381
floating-point variables including arrays and pointers. The
system performance is measured by the SQNR of the input and
the reconstructed speech signal samples. The simulation result
shows 17.9 dB in the floating-point C version, and 17.36 dB in
the fixed-point C version without shift reduction. The floating-
point version requires about 27.1 million cycles for each 20 ms
speech frame, while the converted integer version consumes only
1.1 million cycles, which shows that the integer version is 24.6
times faster than the floating-point version. According to the
shifter reduction result, the shifter cost is reduced by 88%, and
the program becomes 4.5% faster with only 0.1 dB performance
degradation.

6. CONCLUDING REMARKS

The developed converter reads ANSI C programs without
requiring any modification of the source codes, and generates
ANSI C compliant scaled integer versions that are optimized for
target processor architectures including TI's 'C50, 'C60 and
Motorola's 56000 series. The converter consists of three parts,
which are range estimation, shift reduction and code conversion
modules. The SUIF compiler system is extensively used for the
implementation of these modules. The simulated annealing

method is used for the optimization of the number of shifts for
scaling.

A fourth order IIR filter and the QCELP codec are implemented
using the Autoscaler for C. The translated integer C versions are
20 to 400 times faster than floating-point C codes. For the fourth
order IIR filter example, 71% of scaling shifts are removed and
6% to 37% of speedup is achieved according to the target
processor architectures. The translator also reduces the
quantization noise by keeping the upper part of the multiplied
results and employing the simulation based optimum scaling
method. For the fourth order IIR filter example, 49.3 to 78.5dB
SQNR is obtained according to the word-length of a target
processor. The total conversion time for the QCELP codec is less
than 30 minutes because of the high level language based
simulation for the range estimation and profiling.

7. REFERENCES
[1] V. Zivojnovic, "Compilers for Digital Signal Processors,"

DSP & Multimedia Technology, vol. 4, no. 5, pp. 27-45,
July/August, 1995.

[2] W. Sung, “An Automatic Scaling Method for the
Programming of Fixed-point Digital Signal Processors, ” in
Proc. of the IEEE International Symposium on Circuits and
Systems, pp. 37-40, Singapore, June 1991.

[3] S. Kim and W. Sung, “A Floating-point to Fixed-point
Assembly Program Translator for the TMS320C25,” IEEE
Trans. on Circuits and Systems, vol. 41, no. 11, pp. 730-739,
Nov. 1994.

[4] S. Kim, and W. Sung, “Fixed-point Optimization Utility for
C and C++ Based Digital Signal Processing Programs,” in
Proc. of 1995 IEEE Workshop on VLSI signal processing,
pp. 197-206, Oct. 1995.

[5] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point
Optimization Utility for C and C++ Based Digital Signal
Processing Programs,” IEEE Trans. on Circuits and
Systems accepted for publication.

[6] M. Willems, V. Buersgens, T. Groetker, and H. Meyr,
“FRIDGE: An Interactive Code Generation Environment for
HW/SW Codesign,” in Proc. of 1997 IEEE International
Conference on Acoustics, Speech, and Signal Processing,
pp. 287-290, Apr. 1997.

[7] Jiyang Kang and Wonyong Sung, “Fixed-point C Compiler
for TMS320C50 Digital Signal Processors,” in Proceedings
of the ICASSP ’97, pp. 707-710, Apr. 1997.

[8] The SUIF Library, Stanford Compiler Group, CA, 1994.
[9] Ki-Il Kum, Jiyang Kang and Wonyong Sung, “A Floating-

point to Fixed-point C Converter for Fixed-point Digital
Signal Processors,” in Proc. of the Second SUIF Compiler
Workshop, Aug. 1997.

[10] TMS320C2x/C2xx/C5x Optimizing C Compiler (version
6.60), Texas Instruments Inc., TX, 1995.

[11] TMS320C6x Optimizing C Compiler, Texas Instruments
Inc., TX, 1997.

[12] DSP56KCC User’s Manual, Motorola Inc., 1992.
[13] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,

“Optimization by simulated annealing,” Science, vol. 220,
pp. 671-680, May, 1983.

[14] W. Gardner, P. Jacobs, and C. Lee, QCELP: A variable rate
speech coder for CDMA digital cellular, Kluwer, MA, 1993.

