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ABSTRACT

We propose and consolidate a definition of the discrete fractional
Fourier transform which generalizes the discrete Fourier transform
(DFT) in the same sense that the continuous fractional Fourier
transform (FRT) generalizes the continuous ordinary Fourier Trans-
form. This definition is based on a particular set of eigenvectors
of the DFT which constitutes the discrete counterpart of the set of
Hermite-Gaussian functions. The fact that this definition satisfies
all the desirable properties expected of the discrete FRT, supports
our confidence that it will be accepted as the definitive definition
of this transform.

1. INTRODUCTION

In recent years, the fractional Fourier transform (FRT) has attracted
a considerable amount of attention, resulting in many applications
in the areas of optics and signal processing. However, a satisfac-
tory definition of the discrete FRT, consistent with the continuous
transform, has been lacking. In this paper, our aim is to propose
(following Pei and Yeh [1]) and consolidate a definition which has
the same relation with the continuous FRT, as the DFT has with
the ordinary continuous Fourier transform. This definition has the
following properties, which may be posed as requirements to be
satisfied by a legitimate discrete-input/discrete-output FRT:

1. Unitarity.

2. Index additivity.

3. Reduction to the DFT when the order is equal to unity.

4. Approximation of the continuous FRT.

A comprehensive introduction to the FRT and historical ref-
erences may be found in [2]. The transform has become popu-
lar in the optics and signal processing communities following the
works of Ozaktas and Mendlovic [3, 4], Lohmann [5] and Almeida
[6]. Some of the applications explored include optimal filtering in
fractional Fourier domains [7], cost-efficient linear system synthe-
sis and filtering [8, 9] and time-frequency analysis [6, 2]. Further
references may be found in [2].

A fastO(N logN) algorithm for digitally computing the con-
tinuous fractional Fourier transform integral has been given in [10].
This method maps theN samples of the original function to theN
samples of the transform. Whereas this mapping is very satisfac-
tory in terms of accuracy, theN �N matrix underlying this map-
ping is notexactlyunitary and does notexactlysatisfy the index
additivity property. This makes it unsuitable for a self-consistent a
priori definition of the discrete transform.

Several publications proposing a definition for the discrete FRT
have appeared, but none of these papers satisfies all of the above re-
quirements [10, 11, 12, 13, 14]. The definition proposed in this pa-
per was first suggested by Pei and Yeh [1]. They suggest defining

the discrete FRT in terms of a particular set of eigenvectors (previ-
ously discussed in [14]) which they claim to be the discrete analogs
of the Hermite-Gaussian functions. They justify their claims by
numerical observations and simulations. In the present paper we
provide an analytical development of Pei’s claims with the aim of
consolidating the definition of the discrete FRT.

2. PRELIMINARIES

2.1. Continuous Fractional Fourier Transform

The continuous FRT can be defined through its integral kernel:

fFafg(ta) =

Z 1

�1
Ka(ta; t)f(t)dt (1)

whereKa(ta; t) = K�e
j�(t2

a
cot��2tat csc�+t2 cot �) and� =

a�
2

. The kernel is known to have the following spectral expan-
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where k(t) denotes thekth Hermite-Gaussian function andta
denotes the variable in theath order fractional Fourier domain
[4]. Hereexp(�j�ka=2) is theath power of the eigenvalue�k =
exp(�j�k=2) of the ordinary Fourier transform. Whena = 1, the
FRT reduces to the ordinary Fourier transform. Asa approaches
zero or integer multiples of�2, the kernel approaches�(ta�t) and
�(ta + t) respectively [16]. The most important properties of the
FRT are1. Unitarity, 2. Index additivity:Fa1Fa2 = Fa2Fa1 =
Fa1+a2 , 3. Reduction to the ordinary Fourier transform whena =
1.

We will define the discrete FRT through a discrete analog of
(2). Therefore, we will first discuss the Hermite-Gaussian func-
tions in some detail.

2.2. The Hermite-Gaussian functions

Thekth order Hermite-Gaussian function is defined as (k = 0; 1; : : :)
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whereHk is thekth Hermite polynomial havingk real zeros. The
Hermite-Gaussians form a complete and orthonormal set inL2.
The Hermite-Gaussian functions are well known to be the eigen-
functions of the Fourier transform, as will also be seen below.

We begin with the defining differential equation of the Hermite-
Gaussians :

d2 f(t)

dt2
� 4�2t2f(t) = �f(t) (4)



It can be shown that the Hermite-Gaussian functions are the unique
finite energy eigensolutions of (4) [17]. We can express the left
hand side of (4) in operator notation as�

D2 + F D2 F�1
�
f(t) = �f(t) (5)

whereD = d
dt

andF denote differentiation and the ordinary
Fourier transformation respectively. The operator(D2+F D2 F�1)
is the Hamiltonian associated with the harmonic oscillator [18].
Here we will denote this operator byS and thus write (5) asSf(t) =
�f(t):

A theorem of commuting operators will be used to show that
the Hermite-Gaussian functions, which are eigenfunctions ofS,
are also eigenfunctions ofF [19, page 52].

Theorem 1 If A andB commute (i.e.AB = BA), there exists a
common eigenvector set betweenA andB.

We can see thatFandS commute as follows:

FS = FD2 + F2 D2 F�1 = FD2 + F2 D2 F�2 F
= FD2 +D2 F = SF (6)

where we usedF2D2F�2 = D2 which follows fromF2 =
F�2 = R, Rf(t) = f(�t). Using theorem 1 and the fact that
Hermite-Gaussian functions are the unique eigenfunctions ofS,
we conclude that they are also the eigenfunctions ofF .

3. THE DISCRETE FRACTIONAL FOURIER
TRANSFORM

We will first show that the first three requirements are automat-
ically satisfied when we define the transform through a spectral
expansion analogous to (2). Assumingpk[n] to be an arbitraryor-
thonormaleigenvector set of theN � N DFT matrix and�k the
associated eigenvalues, the discrete analog of (2) is

F
a[m;n] =

N�1X
k=0

pk[m] (�k)
a pk[n] (7)

The matrixFa is unitary since the eigenvalues�k have unit mag-
nitude (since the DFT matrix is unitary). Reduction to the DFT
whena = 1 follows trivially, since whena = 1 (7) reduces to the
spectral expansion of the ordinary DFT matrix. Index additivity
can likewise be easily demonstrated by multiplying the matrices
F
a1 andFa2 and using the orthonormality of thepk[n].

Before we continue, we note that there are two ambiguities
which must be resolved in (7). The first concerns the eigenstruc-
ture of the DFT. Since the DFT matrix has only4 distinct eigen-
values (�k 2 f1;�1; j;�jg) [20], the eigenvalues are degener-
ate so that the eigenvector set is not unique. In the continuous
case, this ambiguity is resolved by choosing the common eigen-
function set of the commuting operatorsS andF which are the
Hermite-Gaussian functions. Analogously in discrete case, we will
resolve this ambiguity by choosing the common eigenvector set of
the DFT matrix and the discrete matrix analog ofS. These eigen-
vectors may be considered to be the discrete counterparts of the
Hermite-Gaussian functions. They will be derived in the next sec-
tion.

The second ambiguity is associated with the fractional power
appearing in (7), since the fractional power operation is not single
valued. This ambiguity will again be resolved by analogy with the
continuous case given in (2), i.e. we take�ak = exp(�i�ka=2).

3.1. Discrete Hermite-Gaussians

We will define the discrete Hermite-Gaussians as eigensolutions
of a difference equation which is analogous to the defining differ-
ential equation (4) of the continuous Hermite-Gaussian functions.
First we define the second difference operatoreD2

eD2

h2
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eD2 serves as an approximation tod2=dt2. eD2 can be related toD2

as eD2
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where we we have expressed the shift operator in hyperdifferential
form: f(t+ h) = ehDf(t) [18, 21].

Now, we consider the factorF eD2F�1 appearing inS which
can be evaluated as

F eD2F�1 =
2 (cos(2�ht)� 1)

h2
= �4�2t2 +O(h2) (10)

where we used the fact thatFehDF�1 = ej2�ht, which is noth-
ing but a statement of the shift property of the ordinary Fourier
transform.

Now, we replaceD2 in (5) with
eD2

h2
to obtain an approxima-

tion of S, which we refer to aseS:

eS =
eD2
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If we explicitly write the difference equationeSf(t) = �f(t), we
obtain

f(t+ h) + f(t� h) + 2 (cos(2�ht)� 2) f(t)=h2�f(t) (12)

We convert this equation to a finite difference equation by setting
t = nh [21] with h = 1p

N
:
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wherefn = f(nh). One should note that the coefficients of (13)
are periodic withN , implying the existence of periodic vectors as
eigensolutions of this difference equation [22]. Concentrating on
the period defined by0 � n � N � 1, we obtain a system of
equations of the formSf = �f .

S =

2
66664
C0 1 0 : : : 1
1 C1 1 : : : 0
0 1 C2 : : : 0
...

...
...

. ..
...

1 0 0 : : : CN�1

3
77775 (14)

whereCn = 2(cos( 2�
N
n)� 2). This symmetric matrix commutes

with the DFT matrix ensuring the existence of common eigenvec-
tors. Furthermore this common set can be shown to beuniqueand
orthogonal[22]. These facts will be substantiated below. It is this
eigenvector setuk which will be taken as the discrete counterpart
of continuous Hermite-Gaussians.



Theorem 2 The matrixS and the DFT matrix (F) commute.

Proof: S can be written asS = A + B, whereA is
the circulant matrix corresponding to the system whose impulse
response ish[n] = �[n + 1] � 2 �[n] + �[n � 1], andB is
the diagonal matrix defined asB = FAF

�1. It can also be
shown thatA = FBF

�1 sinceh[n] is an even function. Then
FSF

�1 = F(A+B)F�1 = B+A = S.
We will now show that the common eigenvector set is unique.

First recall that eigenvectors of the DFT matrix are either even
or odd sequences [20]. Thus the common eigenvector set should
also consist of even or odd vectors. We will introduce a matrix
P which decomposes an arbitrary vectorf [n] into its even and
odd components. This matrix maps the even part off [n] to the
first b(N=2 + 1)c components and the odd part to the remaining
components.1 For example, matrixP for N = 5 is

P =
1p
2

2
6664
p
2 0 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 1 �1 0
0 1 0 0 �1

3
7775 (15)

and satisfiesP = P
T = P

�1. The similarity transformation
PSP

�1 can be written as

PSP
�1 =

�
Ev 0

0 Od

�
(16)

where theEv andOd matrices aresymmetric tri-diagonalma-
trices with the dimensionsb(N=2 + 1)c and b(N � 1)=2)c re-
spectively. Since tri-diagonal matrices have distinct eigenvalues
[19], theEv andOd matrices have a unique set of eigenvec-
tors. When the eigenvectors ofEv andOd are zero-padded and
multiplied withP, we get theuniqueeven-odd orthogonal eigen-
vector set ofS. That is, an even eigenvector ofS is obtained as
P[ek

T j 0 : : : 0]T whereek is an eigenvector ofEv. Similarly,
an odd eigenvector set is obtained from the eigenvectors ofOd

asP [ 0 : : : 0 j ok T ]T . Thus we have shown how to obtain the
unique common eigenvector set.

We will now show how to order this vector set in a manner
consistent with the ordering of the continuous Hermite-Gaussians.
Thekth Hermite-Gaussian hask zeros (3). Analogously, we will
order the eigenvectors ofS in terms of the number of their zero-
crossings.2 In counting the number of zero-crossings of the peri-
odic sequencef [n] (with periodN ), we count the number of zeros
in the periodn = f0; : : : ; N�1g, also including the zero-crossing
at the boundary, i.e.f [N � 1]f [N ] = f [N � 1]f [0] < 0 [22].

Since directly counting the number of zero-crossings of each
vector is numerically problematic (due to the very small magni-
tude of certain components), we will employ the following indi-
rect method: As discussed before, the common eigenvectors ofS

and the DFT can be derived from eigenvectors of the tri-diagonal
Ev andOd matrices. An explicit expression for the eigenvectors
of tri-diagonal matrices are given in [19, page 316]. Combining
this expression with the Sturm sequence theorem [19, page 300],
one can show that the eigenvectors of theEv orOdmatrices with
the highest eigenvalue has no zero-crossings, the eigenvector with
the second highest eigenvalue has one zero-crossing, and so on.

1bxc is the greatest integer less than or equal to the argument.
2The vectorf [n] has a zero-crossing atn if f [n]f [n+ 1] < 0.
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Figure 1: Comparison of thef0; 2; 4; 6gth Hermite-Gaussian func-
tions with the corresponding eigenvectors of16�16 theSmatrix.

Therefore one can show that theEv andOdmatrices have eigen-
vectors whose numbers of zero-crossings range from0 to bN=2c
and tob(N � 3)=2c respectively.

Since the even and odd eigenvectors ofS are derived from the
zero padded eigenvectors of theEv andOd matrices, one can
show that after zero padding and multiplication withP, the eigen-
vector ofEv with k zero-crossings yields the even eigenvector of
S with 2k (0 � k � bN=2c) zero-crossings and the eigenvector
of Od with k zero-crossings yields the odd eigenvector ofS with
2k + 1 (0 � k � b(N � 3)=2c) zero-crossings. This procedure
not only enables us to accurately determine the number of zero-
crossings, but also demonstrates that each of the eigenvectors of
S has a different number of zero-crossings so that the ordering in
terms of zero-crossings is unambiguous.

In Fig. 1, eigenvectors ofS are compared with the correspond-
ing Hermite-Gaussian functions.

3.2. Discrete Fractional Fourier Transform

The definition of the discrete FRT can now be given as

F
a[m;n] =

NX
k=0;k 6=(N�1+(N)2)

uk[m] e�j
�

2
ka uk[n] (17)

whereuk[n] is the eigenvector ofS with k zero-crossings and
(N)2 � N mod2. The peculiar range of summation is due to
the fact that there does not exist an eigenvector withN � 1 orN
zero-crossings whenN is even or odd respectively. The overall
procedure is summarized in Table 1.

Lastly, we present a numerical comparison of the discrete and
continuous transforms for a sample input function in Fig. 2.

4. CONCLUSIONS

We have presented a definition of the discrete FRT which exactly
satisfies the essential operational properties of the continuous frac-



Table 1: Generation of MatrixFa

1 Generate matricesS andP.
2 Generate theEv andOd matrices from (16).
3 Find the eigenvectors/eigenvalues ofEv andOd.
4 Sort the eigenvectors ofEv (Od) in the descending

order of eigenvalues ofEv (Od) and denote the
sorted eigenvectors asek (ok).

5 Letu2k[n] = P [ ek
T j 0 : : : 0 ]T .

Letu2k+1[n] = P [ 0 : : : 0 j ok T ]T .
6 DefineFa[m;n] =

P
k2M uk[m] e�j

�

2
ka uk[n],

M = f0; : : : ; N � 2; (N � (N)2)g
tional Fourier transform. This definition sets the stage for a self-
consistent discrete theory of the fractional Fourier transformation
and makes possible a priori discrete formulations in applications.

As a by-product, we obtained the discrete counterparts of the
Hermite-Gaussian functions. We believe that the discrete counter-
parts of the multitude of operational properties for the Hermite-
Gaussian functions, such as recurrence relations, differentiation
properties, etc. can be derived by methods similar to those in Sec-
tion 3.

We already mentioned that theO(N logN) algorithm pre-
sented in [10] can be utilized for fast computation in most appli-
cations. However, it would be preferable to have a fast algorithm
which exactly computes the product of the fractional Fourier trans-
form matrix defined here, with an arbitrary vector.
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