
A DATA–DRIVEN BAYESIAN SAMPLING SCHEME FOR UNSUPERVISED IMAGE
SEGMENTATION

E. Clark and A. Quinn

Department of Electronic and Electrical Engineering, University of Dublin
Trinity College, Dublin 2, Ireland.
eclark@ee.tcd.ie ; aquinn@tcd.ie

ABSTRACT

A Bayesian scheme for fully unsupervised still image segmenta-
tion is described. The likelihood function is constructed by as-
suming that the grey level at each pixel site is a realization of a
Gaussian random variable of unknown parameters, there being an
uncertain number of distinct Gaussian classes in the image. Spa-
tial connectivity between pixels is encouraged via a Markov ran-
dom field prior. The task of identifying the model parameters and
recovering the underlying class label at each site (i.e. segmenta-
tion) is accomplished using a novel reversible jump Markov chain
Monte Carlo (MCMC) scheme. This scheme explores the space of
possible segmentations via proposals that are driven by the actual
image realization—so-called data-driven proposals. The aim is to
(i) induce good mixing in regions of high probability, and (ii) to
optimize the acceptance probability of the proposals. A key de-
velopment is a stochastic version of a recursive labeling algorithm
which has been used in previous work for fast image region split-
ting. In the current stochastic context, it yields fast and effective
split and merge proposals. The performance of the novel MCMC
scheme is illustrated in simulation.

1. INTRODUCTION

Segmentation may be defined as the task of dividing an image into
regions of strict stationarity. Each distinct model from which pix-
els are realized is referred to as a class. In the most general case,
neither the number of classes, nor the paramters of each class, is
knowna priori. Inference, then, of these unknowns, along with a
class label at every pixel site constitutes theunsupervisedimage
segmentation problem.

Segmentation constitutes an ill–posed inverse problem, pos-
sessing no unique solution [1]. A fully Bayesian approach is adop-
ted. It explores, in a regularized manner, the space of possible seg-
mentations. Specifically, probability is distributed over the seg-
mentation space in the light of data (i.e. the image realization) and
the modelling assumptions. Because of the high dimensionality of
the space and the complexity of the posterior probability distribu-
tion, analytical evaluation or optimization are infeasible. It is for
this reason that stochastic sampling techniques have become im-
portant in image segmentation [2, 3]. This paper contributes to the
literature on the design of effective samplers for such problems.
A Markov random field (MRF) prior (the Pott’s model) on the
class labels is adopted to encourage spatial connectivity. The pix-
els themselves are modelled as being conditionally iid Gaussian,

This work was supported by the Forbairt Grant FR/97/012.

an appropriate model for many measurement and degradation [1]
processes. Note that, in the case of this model, segmentation is
interpretable as image denoising or restoration, since the inference
of a label field is equivalent to recovering the mean field in the
presence of additive noise. Note, also, that this problem is closely
related to order-uncertain Gaussian mixture model clustering [4],
but with the class generation process modelled as a (non-causal)
Markov process, rather than as iid.

2. SEGMENTATION MODEL

2.1. Basic Definitions

Let � = fi= (a; b) : 0� a< N ; 0� b <Mg be the site lattice
for an image of dimensionN �M , and�i = f(i � j) \ � : j 2
f(1; 0); (0; 1)gg be the index set to a first order neighbourhood of
sitei 2 �. We writey = fyi : yi2 [0; 1) ; i2�g for the observed
image data. Let class parameterk 2 f1; 2; : : : ; Pg denote the
(unknown) number of classes, andx 2 Dk = f1; 2; : : : ; kgM�N

be a realization of ak–class label field over�. The data model is

Pr(yijxi; �xi ; �2xi) =
1

ZL(xi)
p
2��2xi

exp

�
� (yi � �xi)

2

2�2xi

�
;

(1)

whereZL(�) accounts for the truncation of the Gaussian outside
[0; 1). Under the asssumption that the density is concentrated away
from the boundaries, it is assumed forthwith thatZL(�) � 1.

All the Gaussian parameters for thek-class problem are de-
noted� = (�; �2) 2 Ck = R

k�Rk+ , where� and�2 arek-length
vectors. Finally,z = (k; x; �) is a point in thek-class segmenta-
tion subspace
k = fkg � Dk � Ck, and
 = 
1�
2 : : :�
P ,
being the non–intersecting sum of allk–class segmentation sub-
spaces, is the complete segmentation space over which inference
is perfromed.

Some useful operators can now be defined :!l(x) = fi :
xi = l ; i 2 �g is the support of labell in label fieldx ; K(z) =
f1; 2; : : : ; kg is the set of class labels realizable in statez ; U(�)
denotes a uniform probability mass assignment over the elements
of finite set� ; j � j denotes the cardinality of a countable set, unless
specified otherwise.

2.2. The Prior, Likelihood and Posterior Distributions

The prior may be expressed as a product of distributions,

Pr(z) = Pr(xjk)Pr(�jk)Pr(k); (2)



wherex and� are conditionally independent, givenk. A Pott’s
model (colour-blind MRF) is adopteda priori for the label field :

Pr(xjk) = 1

ZP (k ; �)
exp

(
�

2

X
i2�

X
j2�i

(2�[xi;xj ] � 1)

)
;

whereZP(k ; �) =
P

x2Dk
exp(�) is the normalization constant

(partition function), and�[�;�] is the Kronecker delta function. The
hyper–parameter� controls the degree of connectivity, encourag-
ing clustering of similar labels if greater than 0, or anti-clustering
if less than 0. In our experiments, we take� to be 1.5. Explicit
calculation ofZP(k ; �) is not possible as this would involve sum-
ming jDkj = kN�M terms. Thus, where the need arises, we adopt
an approximation, as motivated by the pseudo-likelihood in [3] :

~ZP(z ; �) =
Y
i2�

X
l2K(z)

exp

(
�
X
j2�i

(2�[l;xj ] � 1)

)
:

The distribution on parameters� is given by

Pr(�jk) =
kY
i=1

Pr(�i)Pr(�2 i);

wherePr(�i) is taken to be uniform on[0; 1), andPr(�2 i) to be
Jeffreys’ (i.e. proportional to��2i ) on (0; 1). It is assumed that
K = k is distributed asU(f1; 2; : : : ; Pg), with P = 20. From
(1), the likelihood function for the image is

Pr(yjz) =
Y
i2�

1p
2� �2xi

exp

�
� (yi � �xi)

2

2�2xi

�
: (3)

Bayes theorem provides the relationship between the posterior dis-
tribution and equations (2) and (3):

Pr(zjy) / Pr(yjz)Pr(z): (4)

3. SAMPLING FROM THE POSTERIOR DISTRIBUTION

The Metropolis-Hastings (MH) algorithm [4, 5, 6] is a procedure
for sampling from arbitrary distributions that need only be avail-
able up to a multiplicative constant. It is this feature of the algo-
rithm that greatly simplifies the problem of sampling from the pos-
terior (4). For example, a realization of a truncated Markov chain,
yeilding samples from a target distribution,�(z), is obtained by
repeated iteration of the MH algorithm, which is fully specified in
the following two-step process :

� From current state z, generate a proposed state
z0 by sampling from proposal distribution g(z0jz)

� Accept proposed state z0 with probability
�(z0jz) = minf1; Ag, else accept z

Here the acceptance ratio is

A =

�
�(z0)

�(z)

g(zjz0)
g(z0jz)

�
: (5)

Note that when�(z) = Pr(zjy) in (4), the normalization constant
need not be calculated, as it cancels in (5). This represents a key
advantage over other rejection-based sampling techniques. One
is free to choose the proposal distributiong(�j�) providing that it

meets the technical requirements for Markov chain convergence.
Further detail may be found in [5], but we emphasize the follow-
ing: (i) detailed balance (reversibility), which demands that, for
all pairs of states,z andz0, each of non-zero posterior probability,
we must haveg(zjz0) > 0 iff g(z0jz) > 0; (ii) irreducibility over

, which demands that the proposal distribution must, with non-
zero probability, potentially allow the chain to reach all states of
non–zero target density, independently of the starting state. Gibbs’
samplers, which sample random variables, without rejection, from
their full conditional, have also been employed in image segmen-
tation [2] with a known number of classes, but are intractable when
proposing jumps between models of different order, such as is nec-
essary in the unsupervised case. The technical demands placed on
the MH proposals in this latter case are satisfied by the reversible
jump [6] techniques considered in Section 4.4.

4. MH PROPOSALS FOR SEGMENTATION

We present four proposal algorithms below. Algorithms L, M and
V within themselves satisfy the reversibility condition, and as a
family provide irreducibility over each
k. The algorithm pair
(JM; JD) provides the dynamic needed to step between segmen-
tation subspaces. The first operation in generating a MH proposal
for sampling from (4) is to select stochastically one of the algo-
rithms from fL, M, V, (JM; JD)g with respective probabilities
f0:99; 0:004; 0:004; (0:001; 0:001)g, and then to pass control to
that algorithm. Each proposal algorithm is now presented.

4.1. L : Propose Label

Algorithm :

� Sample label index i � U(f1; 2; : : : ; j�jg)

� Sample proposed label variable from full
conditional x0i � Pr(�jy; z n fxig), where, from (4):

Pr(Xi = x0ijy; z n fxig) /
1q
�2x0

i

exp

(
�
(yi � �x0

i
)2

2�2x0
i

)

� exp

8<
:�

X
j2�i

(2�[x0
i
;xj ]

� 1)

9=
; :

Here the proposal is bothdata–drivenand state–driven. Since
the proposal distribution and target distribution from which we are
aiming to sample are the same in this case (i.e. the full conditional
of Xi), thenA = 1 (5). Hence, the proposal is always accepted.

4.2. M : Propose Mean

Algorithm :
� Sample parameter index i � U(K(z))

� Propose new mean �0i = �i +N (0; 25)

Here the proposal is state–driven. As the Gaussian density asso-
ciated with the perturbation term is an even function, the ratio of
generation probabilities is one. The acceptance ratio is then given
by

A =
Y

j2!i(x)

exp

�
(yj � �i)

2 � (yj � �0i)
2

2�2i

�

for �0i 2 [0; 1). Otherwise,A = 0.



4.3. V : Propose Variance

The algorithm for proposing a new variance is analogous to that
for the mean. The acceptance ratio is now given by

A =
Pr(�2 0i)

Pr(�2 i)

Y
j2!i(x)

s
�2i
�20i

exp

(
(yj � �i)

2 (�2
0

i � �2i)

2�2i�2
0
i

)
:

4.4. (JM; JD) : Propose Reversible Jump

The reversible jump proposal comprises two algorithms: (i) amer-
gealgorithm,JM, which selects two classes and proposes to merge
them into one new class; (ii) adividealgorithm,JD, which selects
one class and proposes to divide it into two new classes. As the
original and proposed states are from segmentation subspaces of
differing dimension, the required reversible jump MH acceptance
ratio is [6]

A =

�
�(z0)

�(z)

g(zjz0; n0)q0(n0)
g(z0jz; n)q(n) jJ j

�
: (6)

Hereq andq0 are the respective distributions on auxiliary variables
n andn0, andjJ j is the magnitude of the determinant of the Jaco-
bian for some bijective transformation of between the continuous
variables of(z; n) and (z0; n0). It is worthwhile noting that the
generality of equation (6) reflects the degree of choice open to the
designer of a reversible jump process. The generation distribution,
auxiliary variables, and their respective distributions are unspeci-
fied, and it is a challenge to the designer to define these in a way
which addresses the particular reversible jump problem, while, at
the same time, satisfying the bijective requirement and the require-
ments for Markov chain convergence, set out in Section 3. When
setting up a reversible jump for the segmentation problem, we seek
to maintain reversibility between the merge and divide proposals.
For this, we need stochastic schemes for the reversible merging
and division of parameters, and for the binary labelling of sites.

State-driven proposals were adopted for algorithms M and V
above, and since each is exploring in a single dimension, the pro-
posal schemes are (i) fast, and (ii) yield good acceptance proba-
bilities. In the case of the high dimensional jump proposalJD
however, there is very little state information availablea priori
to base satisfactory proposals on. Further more, very low gener-
ation probabilities are encountered from independently sampling
each dimension of the multi–dimensional proposal space, an ef-
fect we will call dilution. To overcome the first of these prob-
lems, we employ proposal schemes which combine a determin-
istic (data–driven) forcing terms with a stochastic perturbation.
The inclusion of a forcing term makes it possible to concentrate
generation probability around data respecting states, thereby en-
couraging ‘sensible’ proposals. Good deterministic schemes for
parameter inference—such as the EM or K-means [7] clustering
algorithms—are readily available. So also is a fast binary labelling
scheme—the Recursive Unanimity Rule (RUR) [7]—which sam-
ples on sparse grids of pixel sites, massively reducing dilution ef-
fects. The proposal algorithms are now presented, followed by de-
tails of the ‘stochasticized’ schemes for parameter selection (via
a stochastic clustering algorithm (CA)) and relabelling (via the
stochastic RUR (i.e. SRUR) algorithm).

JD : Divide Class Proposal
This algorithm divides a single classd in z = (k; x; �), giving

classesd+ andd� in the proposalz0 = (k0 = k + 1; x0; �0).

Algorithm :
� If k = K, set A = 0 and return

� Sample class index d � UfK(z)g

� Calculate effective values of reverse proposal
auxiliary variables n"

0 = �d �CA1(d; y; z)

� Sample forward proposal auxiliary variables
n# � (N (0; 5);N (0; 5);N (0; 5);N (0; 5))

� Calculate proposed parameters
(�0
d+

; �0
d
�

) = CA2(d; y; z) + n#

� Sample the proposed labelling via SRUR
scheme x0 � Pr(�jx; y; d; d+; d�; �0)

From (6), the acceptance ratio is given by

A =
Y

i2!d(x)

vuut �2d

�2 0x0
i

exp

8<
:(yi � �d)

2

2�2 d
�

(yi � �0
x0
i

)2

2�2 0
x0
i

9=
;

�

 
~ZP(z ;�)

~ZP(z0 ;�)

!
exp

8<
:�

X
i2!d(x)

X
j2�i\!d(x)

(�[x0
i
;x0

j
] � 1)

9=
;

�
Pr(�0d+)Pr(�

2 0
d+)Pr(�

0
d�)Pr(�

2 0
d�)

Pr(�d)Pr(�2d)

�
2 q0(N"

0 = n"
0)

(k + 1)Pr(X0 = x0jx; y; d; �0d+; �
0
d�) q(N# = n#)

: (7)

Here, the ratio of terms separated by multiplication signs are due
to the likelihood, the Pott’s prior, the parameter prior, and the gen-
eration probabilities. Note thatjJ j = 1 for the transformation
(�; n)$ (�0; n0).

JM : Merge Classes Proposal
This algorithm merges classes inm+ andm� in z = (k; x; �) to
give classm in the proposalz0 = (k0 = k � 1; x0; �0).

Algorithm :
� If k = 1, set A = 0 and return

� Sample two class indices,
m+ � UfK(z)g

repeat

m� � UfK(z)g

while [ m+ = m�]

� Reorder indices m+; m� such that �m+
> �m

�

� Calculate effective values of reverse proposal
auxiliary variables n#

0 = (�m+
; �m

�
)�CA2(m; y; z0)

� Sample forward proposal auxiliary variables
n" � (N (0; 5);N (0; 5))

� Calculate proposed parameters
�0m = CA1(m; y; z0) + n"

� Calculate SRUR generation probability for
current labelling x, Pr(X = xjx0; y;m;m+;m�; �)

As the divide and merge routines are the reversible counterparts of
each other, the acceptance ratio forJM is the reciprocal of that for
JD (7).



Clustering Algorithms :CA1 , CA2

CA1(d; y; z) andCA2(d; y; z) denote respectively one and two
centroid clustering algorithms as run over data setfyi : i 2 !d(x)g.
CA1 simply returns the mean and variance for the whole data set.
CA2, with initial centroid positions set at the supremum and in-
fimum of the data set, performs a two-partition of the data, and
returns the mean and variance of the data in each of the resulting
partitions. In adding an auxiliary variable to the data-driven out-
put of the CA algorithms, the stochastic diffusion behaviour nec-
essary for reversibility and irreducibility of the parameter splitting
scheme is ensured.

Binary Relabelling: the SRUR algorithm.

In theJD (divide) algorithm above, pixels in!d(x) are relabelled
via a stochastic binary labelling process. The key requirement of
this process, as dictated by reversibility, is that for all� � �, the
process must be able to generate all binary labellings over� with
non–zero probability. Furthermore, it is necessary that the forward
generation probability of any such binary labelling proposal be at-
tainable. A simple scheme which meets both these needs is the
independent Bernoulli sampling of each label. However, this inde-
pendent sampling over a large set of sites induces dilution effects.
Specifically, the generation probability,g(z0jz; n), for any pro-
posed split is small in comparison to the probability,g(zjz0; n0), of
the reverse merge proposal. From (6), the second ratio dominates
the first, leading to far higher acceptance probabilities for a split,
than for a merge, proposal,irrespectiveof �(z0)=�(z).

The Stochastic Recursive Unanimity Rule (SRUR) is a stochas-
tic extension of a deterministic data-driven scheme forsparsela-
belling, leading to fast and accurate segmentations [7]. While
details are not provided here owing to lack of space, the essen-
tial feature is that SRUR can reach—with non-zero probability—
any binary labelling pattern for a square window of sizew0 =
2n. A ternary decision among the following actions is made: (i)
unanimous labelling withd+ (probability pd+); (ii) unanimous
labelling with d� (probability pd

�
); (iii) split window into four

sub-windows, and recurse the procedure (probabilityps). Fig. 1
conceptually illustrates this idea. The algorithm follows a pseudo-
unique trajectory to each possible labelling outcome, thereby great-
ly simplifying the problem of calculating the generation probabil-
ity. The action probabilities above are generated from independent
Bernoulli trials (based on binary class membership ind+ andd�)
at each of the four corners of the window. Then:

pd+ = Pr(4 or 3 corners labelledd+);

ps = Pr(2 corners labelledd+);

pd
�

= Pr(1 or 0 corners labelledd+):

The label sampling step ofJD, i.e.x0 � Pr(�jx; y; d; d+; d�; �0),
invokes the SRUR algorithm on the windows tessellating!d(x).

5. SIMULATION AND DISCUSSION

Fig. 2 shows a synthetic100 � 100-pixel image, composed of re-
gions drawn from a palette of six grey levels, and corrupted by iid
(i.e. mean-independent) noise, such that the average SNR over the
entire image is +33 dB. Fig.3 shows the corresponding gray level
histogram. Starting from a random initial configuration, the seg-
mentation result presented in Fig. 4 is a sample from the posterior
distribution obtained after5�106 MH steps.

1. SRUR splitting. 2. Synthetic data.
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3. Grey level histogram. 4. Segmentation.

There is clear evidence of convergence to an excellent segmen-
tation (restoration), even without the need for annealing. A full
consideration of the convergence speed-ups achieved by way of
the data-driven proposals developed in this paper will be reported
shortly. The viability of reversible jump MCMC algorithms in
high dimensional or speed-sensitive applications, such as the one
described here, will be enhanced by data-driven proposal design.
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