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ABSTRACT hue label fields and motion information. The processing is
divided into three stages:

1: Logarithmic color-space transforiRGBto HI.

2. Estimation of sequence dependant parameters:
Computation of the mean value of the lip hHg,,.
Estimation of the noise on the motion information.

3: Spatiotemporal segmentation of the lip and ROI estima-
tion.

An unsupervised algorithm for speaker’s lip segmentation is
presented in this paper. A color video sequence of speaker’s
face is acquired, under natural lighting conditions and with-
out any particular make-up. First, a logarithmic color
transform is performed from RGB to HI (hue, intensity)
color space and sequence dependant parameters are evalu-
ated. Second, a statistical approach using Markov random
field modeling segment mouth shape using red hue predom-
inant region and motion in a spatiotemporal neighborhood. 2. PARAMETER ESTIMATION
Simultaneously, a Region Of Interest (ROI) is automatically o

extracted. Third, the speaker’s lip shape is extracted from 2-1- Logarithmic color transform

Fhe fi_nal huefield with good quality results in this challeng- color—based approaches often use color angles methods
Ing situation. (HSI) for illuminant—invariant recognition. Color shifts can
be well categorized with angles if camera sensors are suf-

1. INTRODUCTION ficiently narrowband. But_, in our application, we _deal with
a mono-CCD camera which gives poor results with angular
transforms (noisy conditions). MoreovétandB channels
seem to be correlated in the red region (whRrs prepon-
derant). From theRG B color space, we use only two di-
mensionsk and G under the assumption that red prevails
in face areas and specially in lip areas. We define the chro-

It is commonly observed that visual information provides a
precious help to the listener under degraded acoustical con
ditions [1]. The motivation of the present work is to extract
visual information for automatic speech recognition (ASR),
videoconferencing and speaker’s face synthesis under natu
ral lighting conditions with few assumptions.

Some approaches proposed in this area are based o
gray level analysisg.g. Luettin in [5]). Others use color
analysis but need to determine optimal values of some pa-
rameters €.g. Coianiz in [5]). Strong assumptions are re-
quired on the skin hue parameters and the mouth locatior
[6], therefore the skin hue region is often determined man-
ually beforehand.

The previous work [4] used a segmentation to locate the
mouth before estimating lip geometrical features, some of Figure 1:Left 3D RG B histogram of a face under natural illu-
the segmentation parameters were determined beforehandnination;Right 2D RG chromacity histogram.

Here, an algorithm is proposed for unsupervised lip shape

extraction and mouth location under natural conditions, the macity histogram R,G) as the non-normalized projection
requirement being that a micro-camerais mounted on a lightof the RG B color space. The typical histogram of a face
helmet worn by the speaker so that it is fixed w.r.t. the head.sample is shown Fig. 1. Two regions with a specific angular
The RG B video sequence’(bits/color/pixel) contains the  direction appeatr.

region of the face spanning from chin to nostrils. The pur- To obtain a robust hue observation to the lighting con-
pose of the process is to obtain the mouth shape using redlitions, we compute the hue in a mathematical framework
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based on a logarithmic image processing model [3]. Thein-  Second, a temporal observatigt(s) is defined as the
tensity I of an image is represented by its associated grayunsigned difference between the luminance of two consec-
tone function: (Eq. 1). This model satisfies the saturation utive images (Eq. 6)I(s) represents the intensity (or lumi-
characteristics of the human visual system and is justifiednance) at pixes.

from a physical point of view. Specific algebraic and func-
tional operations are redefined in a vectorial structure, like
@ ando as respectively the addition and the opposite of a
gray tone function. The difference betwegand f, respec-
tively logarithmic tone of the intensity andF, is given Eq.

2.
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Considering the illuminancg close to the maximum value
of white M, the logarithmic transform becomés= M <.
We defineh as the logarithmic hue tone &f, difference of

g andr, logarithmic color tone of7 and R (Eq. 3). The
logarithmic difference becomes a ratio betwderand G
componentdd = M x %. Finally, from the RGB color
space, & I logarithmic color space (Fig. 2) is defined con-
sideringM = 256 and the intensity as the mean value of
the R,G and B components (Eq. 4).
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Figure 2:Top 5 typical images of luminance sequenBattom
the corresponding hue sequence.

2.2. Observations

To detect lip regions, motion information is combined with
red hue. From theHI color space, two kinds of ob-
servationso are derived, defined to be in the same range
[0---255] as the image quantificatios pits). First, a hue
observatiorhi(s) consists in filtering the hue valué (s) at
pixel s with a parabola centered on the mean value of lip hue
Hy;,, with a standard deviation of the hue valiig; (Eq. 5).
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The notationl...q4ition denotes a binary function which
takes the valué is the condition is true) otherwise.

H(S) <:>Hlip

h(s) = [256@( X

fd(s) = [Ii(s) &1 (s)] (6)

2.3. Hue and motion estimation

The hue segmentation needs three estimated parameters to
be unsupervisedH;,, A, 6. Due to the chosen expres-
sion of h(s), the tresholded hue field is defined by Eq. 7,
expressing the link betweehy andéy,.

h(S) >0 & |H(S) <:>Hlip| < Ap+/256 ©0;, (7

The hue histogramp; »,i € [0---255]} is an useful rep-
resentation of the hue distribution over the image. We can
detect two modes, one for the face, the second for the lip.
But, in natural conditions (no make-up), the two modes are
mixed (Fig. 3). In order to estimaté;;, accurately, a spe-
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Figure 3:Left histogram of hue imagRight unsupervised seg-
mentation of hue face.

cific hue Hs, (tqce,1ip) 1S defined in Eq. 8.Hy;, is defined
by the Eqg. 9.

H($) = DS s <) ®
1ENp
Hip = Hs,(1ip) (Ss) 9)

&, corresponds to the appropriate interval &hdepresents
the imageS after face segmentation. The processing re-
spects the following steps:
1: EstimateH pq4ce USING{p; 1,7 € [0---255]} computed
over the hue image.
2: Segment the first hue image with a basic spatial MRF
segmentation via the hue transform observation
3: EvaluateHy;, using {p;n,i € [0---255]} computed
over the segmented hue image.
on(lip) and oy (face), camera dependant parameters,
are independant from the speaker and the lighting condi-
tions. They can be estimated by camera calibration. Cur-
rently, the range of, is the result of the statistical distribu-
tion of manually estimate over caracteristic natural condi-
tions. The selected range fox ( face, lip) is [100 - - - 200]
and fordy, (lip), [100 - - - 150]. This range corresponds to the



red predominant region. The equation 7 is then respectedresp. not belongingj) to red hue areas. This label field is

with 8, = 192 andA gy = 6. supposed to follow the main MRF (Markov Random Field)
The algorithm requires an appropriate threshilg to property related to apatiotemporal neighborhostfucture,

suppress the camera noise without cutting significant tem-i.e. the labell; of the current pixells depends only on the

poral changes. In the previous work [4], this threshold was labels of its spatiotemporal neighbors

determined before segmentation by hand. We compute here  Maximizing the A Posteriori probability (MAP crite-

the entropyE ;4 (S) over an image difference (Eq. 11). This rion) of the label field is equivalent to minimizing a global

gives the level of noise from which we can deduce the value energy function [2]:

of 6;4 (Eq. 12). The thresholded motion field is then de-

fined by fd > 6 4. W(S)= Y Uu(S)+ a.Un(S) (13)
oe{fd,h}
PiolS) = card Z (o(8)=0) (10) wherelU, andU,, represent respectively tlatachment en-
ergiegexpressing the link between labels and observations,
E,(S) = & Z Pi,o(9)log2(pi,o(S)) (11)  Eq. 14) and thenodel energycorresponding to spatial and
i€[0---255] temporal a priori constraints) (Eq. 15) over the im&jex
0ra(S) = 9Fa(S) (12) is a weighting coefficient between the two energies.
wherep; ,(S) represents the probability of leviin the ob- U,(S) = Z {[oS ¢>¢o(ls)]2:| 14)
servatiorp over images. ¢ 202

sES
The thresholded fields appear non homogeneous and ©

noisy (Fig. 4). Therefore, we need a statistical relaxation wherev, is an attachment function, mean value of the ob-
to segment more accurately the lip. servationo over S and o2 is the corresponding variance.
Both are estimated on line.
The a priorimodel energy is defined as a sum of inter-
S action potential functions over the neighborhood:

=3[ Vil 1] (15)

s€S nen(s)

The spatiotemporal potential functidfn; is defined as the
inverse of the Euclidian distance between two neighbors.
The distance integrates two elementary potenfialsndg;

as scale factors (Eq. 16).
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: where(s;n) = (0, d,,0;:) andd € {&1;0;1}

Figure 4:From top to bottomsequence of temporal observation The elementary poter_ma,& andg _are defined tq con-
f#d: sequence of red predominance observafionith unsuper- strain the model respectively t_o spatial homogeneity pf Ig-
vised parameter estimatiol(;,, = 130 ; Ay = 6); sequence  Dels and temporal homogeneity of hue when no motion is
of temporal observation thresholded with unsupervised parame-detected (details in [4]).

ter estimation {4 = 9); sequence of red prevailing observation

thresholdedf}, = 192). 3.2. The relaxation algorithm

The iterative deterministic algorithm ICM (lterated Condi-

3. THE SEGMENTATION ALGORITHM tional Modes) is implemented to compute the minimum en-
ergy at each site (Eq. 13 with typx = 20), starting from
3.1. The spatiotemporal MRF framework the thresholded fields as initial label configuration. After a

few iterations on the field (less thd® to respect the stop-
ping criterion for convergencAW (S)/W (S) < 0.05 %),
convergence is achieved. One obtains homogeneous red hue
and lip motion fields (Fig. 5).

From these two thresholded observations, four initial la-
bels @o,a1,b9,b1) are derived, for coding four pixel classes:
pixels with () (resp. without §)) motion, belonging «)



Figure 5: From top to bottom initial labels; label fields after
relaxation, The 4 labels are shown in grey levels (from white to
black: b1, a1, bo, ag); red hue relevant label imageso(anda1)
superposed with luminance.

3.3. ROI estimation

From lip red hue relevant labels, the ROl is evaluairdne
by maximising a cost functioR(.S) on each image (Eq. 10
in [4]) after each step of the relaxation. One each image, the
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Figure 7: Internal lip measurement on the sequence partially
shown Fig. 5 Bmanuat @S manual parameter setting measure;
Bunsup. @s unsupervised parameter estimation meadBye; .+x

as ground truth measure)

images of speaker’s face without any particular make-up or
lighting). First, the choice of a logarithmic transformation
close to the characteristic of the human visual system en-
ables the algorithm to estimate accurately the mean value
of lip hue Hy;;, (the speaker's dependant parameter). This
transformation is combined with a noise estimation on the

last estimated ROI is increased with a scale factor and usec}rame difference. Second, the spatiotemporal algorithm in-

to initialize the current one. The ROI estimation reduces the
relaxation time by surrounding the mouth precisely. More-
over, it increases the accuracy of parameter’s estimation.

4. LIP SHAPE EXTRACTION

tegrates hue with motion information, improving the quality

of contours often elusive on speaker’s lips. Finally, the qual-
ity of the segmented fields is similar to those obtained with
parameters determined beforehand manually [4]. We need
to process more sequences to test the robustness of the pa-

Different sequences have been tested, some with natural reiameter estimation with more difficult cases, like faces with

make-up Topin Fig. 6), others with poor lighting condi-
tions without any make-upttomin Fig. 6). These results

beard or colored people faces.
The proposed algorithm requires less than 10 iterations

show the robustness of the unsupervised algorithm to theuntil convergence (about 2 sec. on a SunUltral).

variability of natural conditions. The unsupervised param-
eter estimation method gives a one pixel mean difference
with ground truth measures for the vertical height and the
horizontal width of the internal lip opening (Fig. 7). The

external shape is unfortunately more elusive but accurate

enough to initiate a simple deformable geometrical model.
L)

Figure 6: Top Sequence of final red hue fields with ROI super-
posed on the luminance with soft red make-Bpitom Sequence

of final red hue fields with ROI superposed on the luminance with
no lighting supply and no make-up.

5. CONCLUSION

An unsupervised lip segmentation have been successfully

applied to several sequences in natural conditions (natura
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