
A NEW SCALABLE DSP ARCHITECTURE FOR SYSTEM ON CHIP (SOC) DOMAINS

Matthias H. Weiss, Frank Engel, and Gerhard P. Fettweis

Mobile Communications Systems Chair
Dresden University of Technology, 01062 Dresden, Germany

fweissm,engel,fettweisg@ifn.et.tu-dresden.de

ABSTRACT

The ongoing advances in semiconductor technology are the en-
abler for completeSystem on Chip(SoC) solutions. In this SoC
domainDigital Signal Processors(DSPs) are employed to carry
out software driven digital signal processing tasks. Although DSPs
could still be modified in the SoC domain, they are mainly em-
ployed as fixed DSP cores. Possible adaptations to the embedding
system cannot be carried out.
Thus, our work is targeted to design expandable DSP architectures.
To achieve this expandability, we designed a sliced DSP architec-
ture. Here, the number of slices can be adapted towards system
needs. Specific system requirements can be achieved by adding
dedicated datapaths to these slices. With this approach one magni-
tude of order in performance boost can be achieved, which creates
new demands for I/O processing. Thus, within our DSP architec-
ture we integrated a dedicated I/O processor.
In this paper we present this new scalable DSP architecture, tools
to map algorithms onto this DSP architecture, and the concept of
our new I/O controller. These technologies allow to easily adapt
our DSP architecture to different system requirements.

1. INTRODUCTION

In Systems on Chip(SoC) domains software driven digital sig-
nal processing tasks are carried out byDigital Signal Processors
(DSPs). Examples are sound-, video-, modem- or speech- appli-
cations. In this SoC domain, system tasks can be partitioned onto
different SoC components such as micro controller, dedicatedAp-
plication Specific Integrated Circuits(ASICs), or DSPs. If the DSP
needs to provide more performance but cannot be extended, tasks
have to be supported by an ASIC, although DSP flexibility would
be needed. Thus, in the SoC domain a DSP architecture is re-
quired, which can be adapted towards system needs.

1.1. Requirements

This becomes obvious in applications with high data rates, such
as video- or graphic-codecs, speech recognition, or high data rate
modems. Here, data rates are in a similar range as the proces-
sor clock. Thus, the processing has to be speeded up by exploit-
ing parallelism. This can be achieved by exploiting coarse grain
parallelism, e.g. by implementing different algorithm blocks onto
different hardware units. The dataflow graph is imitated by the

This work has been sponsored in part by the Deutsche Forschungs-
gemeinschaft (DFG) within the Sonderforschungsbereich (SFB) 358,
Siemens Semiconductor, and Asahi Chemical.

hardware implementation. However, if the application changes the
hardware has to be changed also.
A different approach is to exploit fine grain parallelism, e.g. by
employing a processor architecture with parallel datapaths. This
provides a software programmable solution and can be even more
efficient than a hardwired solution [1]. Since here parallelism is
exploited on the instruction level, different algorithms need to use
one common architecture.
Thus, in the SoC domain a programmable processor architecture
is needed, which provides scalability and expandability.

1.2. Current DSP Architectures

One way to expand DSP architectures is to duplicate the complete
core. An example for such a multi core solution is TI’s C80x. This
architecture comprises 4 DSP units, 4 memories, and one RISC
core. The connection is performed by a crossbar switch. However,
this leads to an expensive communication network and requires a
complicated programming paradigm. Even TI reduced this archi-
tecture down to 2 cores by introducing the C82x architecture. A
different approach is taken by media processors. These processors
such as TI’s C62x or Philip’s TriMedia are typically based on a
Very Long Instruction Word(VLIW) Instruction Set Architecture
(ISA), employ register files, and provide packed arithmetic. Here,
the communication problem is solved via an expensive global reg-
ister file, which had to be split into 2 parts in TI’s C60 case.
Another way to solve this communication problem is to use a ma-
trix memory as suggested by [2] or [3]. However, memory is a
critical system issue and often standard memory components are
preferable. Thus, MicroUnity employed a wide standard memory,
which contains grouped data [4]. Here, several data elements share
one common address and are accessed in groups only. The pro-
cessing is based on theSingle Instruction Multiple Data(SIMD)
principle. However, in MicroUnity’s MediaProcessor a special
communication unit is employed which accesses the group reg-
ister file. In case of extending this architecture, by adding more
parallelism, or introducing new algorithms, this communication
unit has to be redesigned.

1.3. The New DSP Architecture

In this paper we present a scalable DSP architecture, which is
based on group memory. By slicing this architecture, exploiting
SIMD properties, and employing a modular VLIW ISA, this ar-
chitecture can be adapted towards the application’s needs. This
property results from applying the method of orthogonalization on
all design levels (Section 2). At the system level the DSP contains

Slice

Normalizer for "virtual float"

MAC
ALU

Accu

Address
Generation

SIMD
PCU

Wide Data Memory

IO
ProcessorBlock Float

Unit

Bit
Manipu-

lation

Inter Communication Unit

Regs

Lo
ca

l C
om

mu
nic

at
ion

MAC
ALU

Accu

Regs

MAC
ALU

Accu

Regs

Lo
ca

l C
om

m
un

ica
tio

n

Lo
ca

l C
om

m
un

ica
tio

n

Fig. 1: Sliced Architecture

a separated I/O and data processing part (Section 4), at the archi-
tecture level it contains a separated register file and datapath units
(Section 2.4), and at the algorithms level we separated index/data
movement functions from the special arithmetic (Section 3). Fi-
nally, in Section 5 for an implementation example named theM3-
DSP benchmarks are presented.

2. ORTHOGONALIZATION OF THE ARCHITECTURE

To satisfy the needs of the target application the DSP architecture
must be easily adaptable. Thus, the basic architecture must be ex-
pandable by further datapaths or function units. To provide this
property, we applied the method of orthogonalisation. Both al-
gorithms and architecture are separated into adata transfer(Sec-
tion 2.1) anddata manipulationpart [5]. Whiledata transferin-
cludes all memory-register, register-register, or memory-memory
transfers,data manipulationincludes datapath functionality such
as fused vs. divided Multiply/Accumulation, Galois vs. integer
arithmetic [6], or theAdd Compare Select(ACS) functionality to
support the Viterbi algorithm. This approach allows to classify the
algorithm’sdata transferbehaviour independent fromdata manip-
ulation. Thus, we can concentrate ondata transferto find a com-
mon memory architecture which can be finally tailorized towards
the target application’s needs by specific datapaths.

2.1. Data Transfer and Manipulation

One of the major differences between different DSP architectures
is the way to get data from memory to the manipulation units and
vice versa. TheMultiply/Accumulate(MAC) unit for instance re-
quires three data elements at the input and produces one output.
If this MAC unit is duplicated, six inputs and two outputs must
be covered. In general, to avoid memory accesses for all data el-
ements, register files are introduced. However, a register file is a
crucial design issue for achieving a power and area efficient im-
plementation. TI split their register file into two parts while in the
HiPAR-DSP the generality of the register file was reduced [2].
In contrary to this general register file approach, our register file
comprises only connections targeted towards DSP applications.
These connections support the followingdata transferclasses:

� Vector Data Transfer(VDT),

� Sliding Window Data Transfer(SWDT), and

� Shuffle Data Transfer(SDT).

Each of these classes has different requirements for the connec-
tivity of our register file. To provide a scalable architecture, the

register file has to support these classes and still has to be scalable
(Section 2.4). In contrast, data manipulation may differ between
algorithms. Thus, within our scalable architecture dedicated data-
paths can be included into the generic data transfer framework ar-
chitecture to support the algorithm’s special arithmetic.

2.2. Group Principle

To allow for a simple Address Generation Unit (AGU) while also
providing high throughput we apply the group principle. Here,
several elements are combined to a group and are accessed in
groups only. Thus, in our architecture one memory read provides
one element for each slice. Since these groups contain elements
which are not always in the desired order, we added several com-
munication features to our register file.

2.3. Scalable DSP Architecture

In general, a DSP architecture comprises function units for both
tasks: data processingsupported by datapaths (Arithmetic Logi-
cal Units (ALUs), Multiply Accumulate Unit(MACs)) or memo-
ries units, and forprogram processingsuch as aProgram Control
Unit (PCU), aLoop Unit (LPU), or anAddress Generation Unit
(AGU). To provide a scalable DSP architecture,data processing
units must be parameterized to allow adaption to system needs,
while program processing unitsmust be widely independent from
architectural changes to avoid expensive redesigns between two
DSP architectures [7]. We solved the first issue via slicing the
architecture, while the latter was achieved by a new modularIn-
struction Set Architecture(ISA) calledTagged Very Long Instruc-
tion Word[8].
To provide scalability, we sliced the architecture as depicted in
Fig.1. Each slice contains one element of the group memory,
several local registers, and a datapath, e.g. a MAC and a scale
unit.These slices can be added into one parallel architecture as re-
quired by the system needs.

2.4. Scalable Register File

Obviously, this sliced architecture is advantageous for vector pro-
cessing. Here, each slice computes one element of a vector. How-
ever, not all digital signal processing algorithms can be efficiently
computed by vector processing. Examples are filters or transforms.
These algorithms require communication between data elements.
Therefore, two communication units are added to the architecture.
The Inter Communication Unit(ICU) allows to permute a number
of elements in a group, which is required to supportShuffle Data
Transfer. To support communication between neighboring slices
as required for complex number arithmetic, a local communication
unit is introduced. This unit also supportsSliding Window Data
Transfer(e.g. found in filters or pattern matching algorithms). By
splitting the communication unit into these two units - ICU and
LCU - it becomes independent from the number of attached slices.
Thus, the ICU, the LCU, and the local registers build our scalable
register file.

3. TOOL SUPPORT FOR ALGORITHM MAPPING

To map algorithms onto this scalable architecture tools are re-
quired to allow both: extracting the number of parallel slices and
mapping algorithms onto this scaled architecture. Thus, our tools

S2S1

d12=(0 1)

d21=(1 1)

d22=(1 1)d11=(0 1)

Fig. 2: Reduced Dependency Graph(RDG) of the Lattice FIR

are not dedicated to one specific architecture but are inherently
scalable.
In [9] we presented methods to expand and program a standard
DSP architecture. Using the same methods to program the sliced
architecture also, we can provide software compatibility. Here,
loop transformations can be applied to all algorithms, which have
affine recurrence index functions. Thus, they determinedata trans-
fer but are independent fromdata manipulation. An example of
this algorithm class is the lattice FIR algorithm. It is defined as
follows:

for i1 = 0 to I1; for i2 = 0 to I2
S1 : y1[i1; i2 + 1] = F1(y1[i1; i2]; x1[i2 + 1]; y2[i1 � 1; i2])
S2 : y2[i1; i2 + 1] = F1(y2[i1 � 1; i2]; x1[i2 + 1]; y1[i1; i2])

end for; end for

whereF1(a; b; c) = add(a;mult(b; c)). For this algorithm aRe-
duced Dependency Graphwith dependenciesdS1;S2 = (i1; i2)
can be derived as depicted in Fig. 2.
If we assume an architecture withM slices, each memory access

providesM elements. Since stateS1 has no dependencies ini2
direction, we can employM independent slices to compute state
S1. Thus, at iterationi2 = 0 groups

Y1
Gr-1.1 = y1[m"(0; ::;M � 1); i2] and

Y2
Gr-1.1 = y2[m"(�1; ::;M � 2); i2]

can be read. These groups are used in stateS1 to compute the new
group

Y1
Gr-1.2 = y1[m"(0; ::;M � 1); i2 + 1],

while in stateS2 the new group
Y2

Gr-1.2 = y2[m"(0; ::;M � 1); i2 + 1]
is computed. In the next iterationi2 = 1 groups

Y1
Gr-2.1 = y1[m"(0; ::;M � 1); i2 + 1] and

Y2
Gr-2.1 = y2[m"(�1; ::;M � 2); i2 + 1]

are required. Since groupY1Gr-2.1 = Y1
Gr-1.2 data can be read in

Vector Mode Data Transfer. In contrary, groupY2Gr-2.1 andY2Gr-1.2

are differently aligned. Here, groupY2Gr-1.2 has to be shifted by
one element to the right. This can be done via aSliding Window
Data Transfer. In the RDG this can be seen by the dependen-
ciesdS1;S2 = (1; 1). Thus, within the loop we have to read only
two groups to keep all datapaths busy. This allows for high data
throughput.

4. I/O PROCESSING

I/O-processing is typically employed to provide data to the pro-
cessing units and to fetch the results. Especially, if parallel pro-
cessing is applied, the amount of cycles spent for I/O transfer
can become dominating, since this transfer is time dependent, e.g.
serial data arrive at fixed sample rates. A comparison of cycles
needed for signal- versus I/O-processing shows a significant dete-
rioration of the possible signal processing performance. Therefore
all I/O related tasks should be swaped out into a special unit.

even
bank

odd
bank

 word-address offset
word-adr n

word-adr n+1

offset bit-length

next offset

Fig. 3: Bit extraction over memory boundaries

4.1. I/O Requirements

Often, in different types of data streams (e.g. JPEG, ADSL, ATM)
data is grouped in frames where each bit position has a special se-
mantic (e.g. the first 8 bit provide control information, the second
3 bits determine the frame length, etc.). Here, two main tasks can
be distinguished:
1. Tasks forData Manipulation:

� detecting/creating of control information,

� mapping data sets to the requirements of the DSP core
(8,16,32 bit wide data).

2. Tasks forData Transfer

� handling of communication protocols
(e.g. INIT sequence for transmission),

� handling of parallel tasks
(e.g. switching between 2 different data streams),

� controlling resource utilization
(e.g. prioritizing memory accesses).

Typically, these tasks are handled by embedded micro controllers.
However, they are not suited for all data widths. Currently, com-
mon data sizes are 8, 16, or 32 bit, but in many data streams these
sizes are not fixed at all. They vary like in ADSL’sTone Or-
deringprocedure, where tones (or carriers) are ordered according
to the number of data bits assigned to each of them. Here, data
width starts with 1 bit followed by 2 bits, 3 bits, etc.. The actual
mapping-scheme is sent as a table during the connection setup.
However, for signal processing the tones are needed in ascending
order [10]. A reordering is necessary. InAdvanced RISC Ma-
chines’ARM7 processor the instruction contains a shift field for
data alignment before the actual operation is performed. However,
this method cannot be applied, if a bit sequence resides between
the data boundary. Here, an expensive combination from two dif-
ferent sources is necessary. Thus, a new kind of I/O processors is
required for this parsing and low-end protocol task.

4.2. Bit wise Addressing

To overcome this problem we introduce a new concept of bit wise
addressing. Since a pure bit by bit addressing is too expensive, we
work on byte wise addressing also. Here, we interpret the lower
4 address bits as an offset within 2 consecutive data words. The
alignment is performed by a circular shifter (Fig. 3). In case of
Tone Orderingthis principle strongly simplifies the procedure. To
access a bit sequence the address is split into 2 fields. The lower
field contains the bit position in a word while the upper field deter-
mines the word itself. To calculate the address of the next element
only the bit length to the previous offset is necessary. In case the
data boundary is exceeded an overflow occurs which automatically
increments the word address.

Table 1: Benchmarks for theM3-DSP vs. TI’s C6x, HiPAR, and Butterfly DSP

M3 DSP TI’s C60 HiPAR Butterfly DSP
Algorithms @100 Mhz @ 200 Mhz @ 100 Mhz @ 50 Mhz
1024 complex point FFT (Radix-2) 2200 cycles/22�s 20815 cylces/104�s 42�s 54�s
complex FIR, 32 coeff.,100 samples1204 cycles/12�s 6410 cycles/32�s N.A. N.A.
Lattice FIR, 8 coeff.,128 samples 268 cycles/2.7�s 1546 cycles/8�s N.A. N.A.
BCH code(216,124,25) 244 cycles/2.4�s N.A. N.A. N.A.

4.3. Context Switching

Furthermore, the ability to switch fast between tasks is required.
The introduction of several register banks is one method but limits
the number of parallel tasks to the number of parallel banks - or
a costly register saving has to be executed. Thus, we decided to
employ a register file where each register can be used asprogram
counter(PC). To select the current PC a circular table is imple-
mented. Here, each entry points to this register, which contains
the current PC. Using these principles we provide an I/O controller
based on a load/store architecture with a data width of 16 bits as
an integral part of our DSP architecture.

5. APPLICATION AND RESULTS

As an implementation example for our sliced DSP architecture we
chose 16 parallel slices, each consisting of one MAC unit, 4 input
registers, one accumulator, and a scaling unit, which allows to ap-
ply block floating mechanisms [11]. This is the first realization of
our processor architecture called,Mobile Multimedia Modem- or
M3-DSP [12], which must be able to provide up to 3000M MAC/s
running at 100 Mhz. It allows for a complete software implementa-
tion of a new OFDM-based 25Mbit/s Hiperlan wireless ATM mo-
dem. With the help of our new architecture theM3-DSP clearly
outperforms current DSP solutions as TI’s C60x, high end medi-
aprocessors as the HiPar DSP, and achieves similar performance to
customized high-end ASICs as the Butterfly DSP (Table 1). Due to
the ability to tailorize the DSP architecture to specific application
needs, this concept opens the road for software based solutions of
problems which are currently consideredASIC-onlydomains.

6. CONCLUSIONS

In this paper we presented a new scalable DSP architecture for
System on Chip applications. By employing a group memory and
group registers, the DSP architecture can be split into slices. Thus,
according to system’s needs the number of slices can be adapted,
which allows this DSP architecture to suit different system require-
ments. Furthermore, we showed methods for algorithm mapping.
Due to the high data throughput new concepts for I/O processing
were designed by defining a dedicated I/O processor, which is an
inherent part of our DSP architecture.
In our future work we will develop an integrated design environ-
ment, which supports the DSP design at system level. This should
enable system designers to explore the DSP’s design space already
in an early phase of system specification.

7. ACKNOWLEDGEMENT

We like to thank our colleagues for their support, in particu-
lar Wolfram Drescher, Dirk Fimmel, Shiro Kobajashi, Menno
Menenga, Thomas Richter, Attila Roemer, Paul Schwann, and Ul-
rich Walther.

8. REFERENCES

[1] K. Kim, R. Karri, and M. Potkonjak, “Synthesis of applica-
tion specific programmable processors,” inProc. of DAC ’97,
pp. 353–358, 97.

[2] J. Wittenburget al., “HiPAR-DSP: A parallel VLIW RISC
processor for real time image processing applications,” in
Proc. of ICA3PP ’97, pp. 155–162, 97.

[3] M. Trenas, J. Lopez, and E. L-Zapata, “A memory system
supporting the efficient SIMD computation of the two dimen-
sional DWT,” inProc. of ICASSP ’98, 98.

[4] C. Hansen, “MicroUnity’s mediaprocessor architecture,”
IEEE Micro, vol. 16, pp. 34–40, Aug 96.

[5] G. Fettweis, “Design methodology for digital signal process-
ing,” in Proc. of ASAP ’97, (Zurich, Switzerland), 97.

[6] W. Drescher, M. Mennenga, and G. Fettweis, “An architec-
tural study of a digital signal processor for block codes,” in
Proc. of ICASSP ’98, vol. 5, (Seattle, WA, USA), pp. 3129–
3133, May 98.

[7] G. P. Fettweis, “DSP cores for mobile communications:
Where are we going ?,” inProc.of ICASSP 97, vol. 1,
pp. 279–/283, 97.

[8] M. H. Weiss, U. Walther, and G. P. Fettweis, “A structural ap-
proach for designing performance enhanced DSPs: 1-MIPS
GSM fullrate vocoder case-study,” inProc. of ICASSP 97,
vol. 5, pp. 4085–4088, IEEE, Apr 97.

[9] M. Weiss et al., “Using loop transformations to optimize
memory accesses and register allocation in ASDSPs,” in
Proc. of SDA98, pp. 9–17, Feb 98.

[10] Alcatel, Standards project for interfaces relating to carrier
to customer connection of ADSL-equipment, Sept. 97.

[11] S. Kobajashi and G. P. Fettweis, “A block-floating-point
system for multiple datapath DSP,” inProc. of SiPS ’98,
(Boston, MA, USA), Oct. 98.

[12] G. Fettweis, M.Weiss, W.Drescher, U.Walther, F.Engel, and
S.Kobayashi, “Breaking new grounds over 3000 MOPS: A
broadband mobile multimedia modem DSP,” inProc. of IC-
SPAT98, (Toronto, Canada), Sept. 98.

