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ABSTRACT

This paper is concerned with finding the locations of an irregularly
sampled finite discrete-time band-limited signal. First a geometri-
cal approach is described and is transformed into an optimization
problem. Due to the structure of the problem, multiple solutions
exist and are shifts of each other. Three methods of solution are
suggested: an exhaustive method which findsthe exact set of loca-
tions; random search method and cyclic coordinate method, both
descent methods, which find approximate or exact solutions. The
cyclic coordinate method is less likely to fall in alocal minimum
and provesto be more satisfactory than the random search method
inthe presenceof jitter. A practical example, whereasignal issam-
pled several times with aregular spacing, is also described.

1. INTRODUCTION

Irregular sampling appears in many practical applications.
For instance, when sending data through a channdl, if the
channel isnoisy, only anon-uniform subset of dataisrece-
ived. Under certain conditions, irregular sampling methods
may recover the missing data

Irregular sampling for band-limited (BL) signals have been
extensively studied,(e.g.[3], [5]). The methods are iterative
and consistinreconstructingaBL signal giventheband-limit,
the subsample values and the irregular set of locations. In
some situations, for instance when there isjitter in the data,
the locations of theirregularly sampled signal are unknown
and the methods proposed by [3] may not be applied until
these locations are found.

In this paper, we consider irregularly sampled discrete-time
band-limited finite signals (¢2(0, N — 1) g, ) with unknown
locations. First we explorethe geometry of the problem and
derivethesol utionusing asubspace approach, whichistrans-
lated algebraically inorder to solvethe problemnumerically.
We show the existence of asolutionin thediscrete-timecase.
Methods for finding the unknown locations are proposed :
exhaustive search method, random search method, cyclic co-
ordinate method. The performance of the three agorithms
are compared. Then, two practical examples are considered:

(& when thereisasmal jitter in the sampling locations
and

(b) when there are afew fixed shifted grids.

2. DEFINING THE PROBLEM

Thediscrete-timeirregul ar sampling withunknownlocations
problemisasfollows: Letx = [z, ..., zy_1]" beadiscrete-
timesigna of length V. Then:

Definition 2.1 x is. — BL ifthereare L non-zero Fourier
frequencies in the spectrum:
X =Fx=[Xo,X1,...,X;_1,0,...,0" (O

where F isthe N x N DFT matrix, defined by
{an = W(n_l)(m_l)}n,mzl,...,N and W = e_izﬂ-/N-

Suppose K samples of x are observed, with
2<L<K<N

L) an]T . (2)
The problem isto determine the locations:

Xn = [xnuxnza -

n=[n,ny,...,ngl,0<n;<n; <N-1i<j (3
Denotethisasthe (N, K, L) problem where N isthelength
of thediscretetime signa, K isthe number of unknown lo-
cationsfrom whichwe have samplevauesand L istheband-
limit.

3. GEOMETRY OF THE (N, K, ) PROBLEM

Inthissection, we provetheexistence and multiplicity of the
solutionstothe(N, K, L) problem. Based on asubspace ap-
proach, we derive conditionsthat enable to verify if aset of
locationsisa solutionto the (N, K, L) problem.

3.1. Subspace approach

Consider x an L-BL signa and x,, a subsample of x. From
Definition 2.1, the spectrum of x has /. non-zero components.
We deduce that x belongs to the subspace spanned by the



L first columns of the inverse DFT, F~ . Denote the latter
subspace by

Vi = span{fi}{) (4)
wheref; isthe(!” columnof F~!. Define Sk (n) asthesub-

space spanned by the canonical base vectors corresponding
tothelocationsn = [ny, ns, ..., nk] of the subsample x,,,

Sx(n) = span{e,, }{2, )
wheree; isan 1 x N vector, withvalue 1in j —th position
and 0 elsewhere. Hence,

Xn € P(n) = Projs,m)Ve (6)
andn isasolutiontothe (N, K, L) problem.
A small examplewill illustrate.

Example 3.1 Consider the following (4, 3, 2) problem.
SJpposex = [xo, r1,T2, $3]T isa2-BL S|gnaJ

o 1 1 1 1 Xo
T 1 W_l W_2 W_3 X1
| =1 owr owt owe || o | €V
T2 1 w2 w—t w—? 0

Letn = [n1, n2, n3] be the unknown locations. Then
Sa(n) = span{en, ,en,, ey} aNdxn € P(n) = Projs,m)Ve
The possible locations are:

m' =[0,1,2],m® =1[0,1,3],m® = [0,2,3],m* =[1,2,3].

Ifn =[0,1,2] isasolutionthenx,,: € P(n),x,2 ¢ P(n)and
Xms & P(n).

Figure 1. Geometrical interpretation of the (N,K,L) problem

Due to the shift property of the DFT, there may be mul-
tiple solutionsto the (V, K, L) problem which are shifts of
each other.

Theorem 3.1 Let x, bea subsampleof an . — BL signal
x. Ifn = [ny,ne,...,ng] isasolutionto the (N, K, )
problemthen all shifts: of n,

m=n+i=[n+1ins+4...,nx+1

arealso solutionswithl < i < N — ng.

Proof: Ifn = [n1, ns, ..., nx]isasolutionof the(V, K, L)
problemthen x,, € Projs, (n)Vr,where

Vi =span{fy = [1, W= w2 . W_(N_l)l]}f:_ol.
The projection of Vz on Sk (n) isspanned by
{(wmtwnet Wk ©

Similarly, the projection of V;, on the subspace spanned by
the canonica base vectors corresponding to the shifted so-
lutionm =n+i=(ny+4¢,ny+14,...,ng+¢) isspanned
by

W—(n1+i)l W—(n2+i)l o W—(nK+i)l L_—l
{[ ) ) ) ]}1_0
= Wil wene s (8)

Since equation (8) differs of equation (7) by afactor of W,
thisimpliesthat Projs, )V = Projs,m)Vr. Hencem
isaso asolutionto the (IV, K, L) problem. m]

3.2. Algebraicform

In this section, we derive algebraic expressions which ve-
rify if a given set of subsamplelocationsisa solutionto the
(N, K, L) problem.

Consider n = [ny,ns,...,ng] the set of locations asso-
ciated to xy,, a subsample of the L — BL signa x. From
(2), x isfully recovered due to the non-singularity of F,

x = F7IX 9)
L-1

= Zf,x, (10)
=0

= F.X; (11)

where F is the matrix formed by the columns {f;}1;! of
F~! = +F*and X = [Xo, X1,..., Xz_1]T arethenon-
zero componentsof the spectrum X. Hencex belongsto )y, .
Furthermore, note that x,, is simply composed of the rows
n = [ny,ns,...,ng] of x. Itisobtained by multiplying
equation (11) ontheleft by amatrix Py, = [en,€n, - .. €nx ]’ s
where P,, isa projection matrix which projects x onto x,,
ande; isthe N x 1 canonical base vector. Hence,

Xn = Ppx (12

= P,F;X; (13)

A priori, Xz isunknown and therefore an expression which
gives X in terms of the observed vaues, x,,, is desired.

DefineM,, = P,F 1, thematrix composed of rows {n; }1£ |
and first L columnsof F~'. Then,

Xn == MHXL (14)
M; xn = MiM,X; (15)
=Xy = (MiM,) 'Mixy. (16)



(M;,M,, )" isthe generalized inverse and exists since the
columns of Fy, are linearly independent.

Henceto verify if aset of locationsm = [mq, ms, ..., mg]
isasolution to the (N, K, L) problem we must verify that
Xn € Projs,m)Vr. Algebraicaly, thisisequivalenttove-
rifying that

Xm = My (M5, M)~ T MZ x, (17)
isequa to x, or equivaently,
(M (M5 My,) " 'ME, — I)xp = 0. (18)

The latter gives a sufficient condition for the existence of
asolution. A closed form formulafor the solution is obta-
ined by solving the system of & nonlinear equationsin (18)
with respect to the K unknowns, m = [my,ma, ..., mg].
Since the system is nonlinear, it may admit more than one
solution.!

4. SOLVING METHODS

In thissection, we present three methodsto numerically solve
the (N, K, L) problem. The optimdity of a solution m is
tested by verifying if the ¢2-norm of equation (18)

E(m) = [|(Mun (M Mz )" My, = Dxal| - (19)

equals zero for the Exhaustive method or £(m) isminimi-
zed for the Random Search and Cyclic Coordinate methods.

4.1. Exhaustive M ethod

An elementary way to solvethe (N, K, L) problemisusing
an exhaustive search approach. This method consistsin ve-
rifyingequation (19) forall () setsof locations. From The-
orem 3.1 since some sets of locations are just shifts of each
other, we put these sets in one class and elect a representa-
tive for each class. The representative satisfying equation
(19) with E(m) = 0 isasolutionof the (N, K, L) problem.

General Step:

1. Obtain m? by perturbing component 5 of m by {4+1, —1}
with probability 0.5. Go to step 2.

2. If E(m?®) = 0 thenm = m®. Goto step 3.
If |[E(m®) — E(m)| = 0, then go to step 3.
If B(m?) < F(m') thenm = m?, m' = m? and repeat
step 1. Otherwise, j = j + 1,m = m'. If j < K repeat
step 1.

3. If E(m) = 0 then m isglobal minimum. Otherwiseit isa
local one. Stop.

The cyclic coordinate method is similar to the gradient
descent but does not require any derivative information. It
uses the coordinate direction axis asthe search directions. It
differsfrom the Random search method in that the perturba
tionis not probabilistic but deterministic.

Algorithm 4.2 Cyclic coor dinate method

Initial Step:
Let di,...,dx bethe coordinate directions, where d; is
1 x K vector with value 1 in position ¢, and 0 elsewhere.
Choose aninitial set of K locationsm?, andletm = m?,
j = 1. Goto general step.

General Step:
1. m is obtained by perturbing component j of m* by

{E(m' +2d,)},

A; =arg min
! Ae{-1,0,1}

m =m' 4 \;d;. Gotostep 2.

2. If E(m) = 0 then go to step 3.
If |[E(m') — E(m)| = 0, then go to step 3.
Otherwisej = j + 1, m' =m. If j < K thenrepeat step
1.Ifj > Kthenj=1andrepeatstepl.

3. If E(m) = 0 then m isa global minimum. Otherwiseit is
a local one. Stop.

Both methodsdo not guaranteeaglobal minimum. When
stuck in alocal minimum, arandom set of locationsis gene-
rated and themethods arerepested. Thetested algorithm co-
mesto ahalt when aglobal minimum isobtained or an upper

4.2. Randomsearch (RS)and Cyclic coordinate(CC) method bound on the number of local minimum is exceaded.

The random search method isan iterative descent algorithm.
A component of the location set is perturbed according to a
probability distribution. If the cost function (F(m)) of the
perturbed solution decreases, we keep perturbing the same
component. Otherwise we perturb another component and
continuethisway until aglobal or local minimum isfound.

Algorithm 4.1 Random search method

Initial Sep:
Choosean initial set of X locationsm?, andlet m = m?,
j = 1. Goto general step.

11f K = L then there is an infinite number of solutions. This is
due to the fact that the equivalent condition of existence is the identity,
M, M = I, where M, is asquare matrix.

5. EXPERIMENTS

In this section, we do some experiments on the algorithms
proposedin Section 4. All methods need to cal culate thevar

[ueof E(m) whichinvolvesmatrix multiplicationand matrix
inverseoperationson matricesof size K x L, K x K, respe-

ctively.

The exhaustive search method is certain to find a solution.

It is most time consuming when the number of unknown lo-

cations K iscloseto N/2 which is dueto its combinatorial

nature.



5.1. Subsamplelocationswith jitter

As mentioned in theintroduction, theimportance of finding
the unknown locationsis due to the presence of jitter in the
data. Jitter occurs when the sample valueslocationismista-
ken for another location: «,,, = x,,+;, where j isthejitter
and the n; are uniformly spaced. Different typesof jitter are
described in[2]. We applied the RSand CC methods on data
withjitter around acorrect valuefollowingasymmetric pro-
bability distribution,

Pij==x1)=p,P(j=0)=1-2p.

Thiscorrespondsto taking samples around multiplesof asam-
pling interval , but with a certain time location uncertainty.
Figure 2 shows that the percentage of finding the correct lo-
cations decreases with the probability of thejitter. Also, the
CCand RSmethodsfind solutionsto (N, K, L) = (16,4, 2)
problem on average 82%, 52% of thetime, respectively. The-
reforethe Cyclic Coordinatemethodislesslikely to get stuck
inalocal minimum.
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Figure 2: Percentage of finding a global minimum for CC and RS
methods with symmetric probability distribution for jitter, N =
16, K = 4, L = 2, 100 simulations on 50 different signals.

5.2. Subsamplelocationswith unknown shift

As apractical example, consider the following setup. Sup-
pose two photographs of a scene are taken, where oneisa
shifted version of the other, but with unknown shift. Com-
bining thetwo sets of dataand verifying equation (19) for all
possible shifts, the correct shift is determined and theimage
may be reconstructed using irregular sampling. For compu-
tational reasons, we ran a one-dimensional example to see
how well the shift can be recovered. Suppose the signd is
of length N = 256 and band-limited to /. < 64. Take two

sets of samples at locations8n and8n+k,0 <n < 31,1 <
k < 7, with shift £ unknown. This gives an irregular set
of K = 64 locations. Figure 3 shows F(m) for k vary-
ing 1 to 7 (where the optimal shiftisk* = 4) and various
L,(33 < L < 63). Clearly, k* = 4 can be recovered and
E(m) isleast for L closer to K.

6. CONCLUSION

We havetresated an essential element of theirregular sampl-
ing problem, which is that of not knowing the locations of
the subsamples. Most of the fast methods aready develo-
ped assume the knowledge of these locations but in certain
applications where there isjitter in the data these locations
are unknown. The solving methods we described find these
unknown locations.
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