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ABSTRACT

This paper is concerned with finding the locations of an irregularly
sampled finite discrete-time band-limited signal. First a geometri-
cal approach is described and is transformed into an optimization
problem. Due to the structure of the problem, multiple solutions
exist and are shifts of each other. Three methods of solution are
suggested: an exhaustive method which finds the exact set of loca-
tions; random search method and cyclic coordinate method, both
descent methods, which find approximate or exact solutions. The
cyclic coordinate method is less likely to fall in a local minimum
and proves to be more satisfactory than the random search method
in the presenceof jitter. A practical example, where a signal is sam-
pled several times with a regular spacing, is also described.

1. INTRODUCTION

Irregular sampling appears in many practical applications.
For instance, when sending data through a channel, if the
channel is noisy , only a non-uniform subset of data is rece-
ived. Under certain conditions, irregular sampling methods
may recover the missing data.
Irregular sampling for band-limited (BL) signals have been
extensively studied,(e.g.[3], [5]). The methods are iterative
and consist in reconstructing a BL signal given the band-limit,
the subsample values and the irregular set of locations. In
some situations, for instance when there is jitter in the data,
the locations of the irregularly sampled signal are unknown
and the methods proposed by [3] may not be applied until
these locations are found.
In this paper, we consider irregularly sampled discrete-time
band-limited finite signals (`2(0; N � 1)BL) with unknown
locations. First we explore the geometry of the problem and
derive the solutionusing a subspace approach, which is trans-
lated algebraically in order to solve the problem numerically.
We show the existence of a solutionin the discrete-time case.
Methods for finding the unknown locations are proposed :
exhaustive search method, random search method, cyclic co-
ordinate method. The performance of the three algorithms
are compared. Then, two practical examples are considered:

(a) when there is a small jitter in the sampling locations
and

(b) when there are a few fixed shifted grids.

2. DEFINING THE PROBLEM

The discrete-time irregular sampling with unknownlocations
problem is as follows: Let x = [x0; : : : ; xN�1]T be a discrete-
time signal of length N . Then:

Definition 2.1 x is L�BL if there are L non-zero Fourier
frequencies in the spectrum:

X = Fx = [X0; X1; : : : ; XL�1; 0; : : : ; 0]
T (1)

where F is the N �N DFT matrix, defined by
fFnm = W (n�1)(m�1)gn;m=1;:::;N and W = e�i2�=N .

Suppose K samples of x are observed, with

2 � L � K < N

xn = [xn1; xn2; : : : ; xnK ]
T : (2)

The problem is to determine the locations:

n = [n1; n2; : : : ; nK ]; 0 � ni < nj � N � 1; i < j: (3)

Denote this as the (N;K;L) problem whereN is the length
of the discrete time signal, K is the number of unknown lo-
cations from which we have sample values andL is the band-
limit.

3. GEOMETRY OF THE (N;K;L) PROBLEM

In this section, we prove the existence and multiplicityof the
solutions to the (N;K;L) problem. Based on a subspace ap-
proach, we derive conditions that enable to verify if a set of
locations is a solution to the (N;K;L) problem.

3.1. Subspace approach

Consider x an L-BL signal and xn a subsample of x. From
Definition2.1, the spectrum ofx hasL non-zero components.
We deduce that x belongs to the subspace spanned by the



L first columns of the inverse DFT, F�1. Denote the latter
subspace by

VL = spanfflg
L�1
l=0 (4)

where fl is the lth column ofF�1. Define SK(n) as the sub-
space spanned by the canonical base vectors corresponding
to the locations n = [n1; n2; : : : ; nK] of the subsample xn,

SK(n) = spanfenig
K
i=1 (5)

where ej is an 1�N vector, with value 1 in j � th position
and 0 elsewhere. Hence,

xn 2 P(n) = ProjSK(n)VL (6)

and n is a solution to the (N;K;L) problem.
A small example will illustrate .

Example 3.1 Consider the following (4; 3; 2) problem.
Suppose x = [x0; x1; x2; x3]

T is a 2-BL signal.
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Let n = [n1; n2; n3] be the unknown locations. Then

S3(n) = spanfen1 ;en2 ;en3g and xn 2 P(n) = ProjS3(n)V2

The possible locations are:

m
1 = [0; 1; 2];m2 = [0; 1; 3];m3 = [0; 2; 3];m4 = [1; 2; 3]:

If n = [0; 1; 2] is a solution then x
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Figure 1: Geometrical interpretation of the (N,K,L) problem

Due to the shift property of the DFT, there may be mul-
tiple solutions to the (N;K;L) problem which are shifts of
each other.

Theorem 3.1 Let xn be a subsample of an L � BL signal
x. If n = [n1; n2; : : : ; nK] is a solution to the (N;K;L)
problem then all shifts i of n,

m = n+ i = [n1 + i; n2 + i; : : : ; nK + i]

are also solutions,with 1 � i < N � nK .

Proof: Ifn = [n1; n2; : : : ; nK] is a solutionof the (N;K;L)
problem then xn 2 ProjSK(n)VL,where

VL = spanffl = [1;W�l;W�2l; : : : ;W�(N�1)l]gL�1l=0 :

The projection of VL on SK(n) is spanned by

f(W�n1l;W�n2l; : : : ;W�nKl)gL�1l=0 : (7)

Similarly, the projection of VL on the subspace spanned by
the canonical base vectors corresponding to the shifted so-
lutionm = n+ i = (n1+ i; n2+ i; : : : ; nK+ i) is spanned
by

f[W�(n1+i)l;W�(n2+i)l; : : : ;W�(nK+i)l]gL�1l=0

= fW il[W�n1l;W�n2l; : : : ;W�nKl]gL�1l=0 : (8)

Since equation (8) differs of equation (7) by a factor ofW il,
this implies that ProjSK(n)VL = ProjSK(m)VL. Hencem
is also a solution to the (N;K;L) problem. 2

3.2. Algebraic form

In this section, we derive algebraic expressions which ve-
rify if a given set of subsample locations is a solution to the
(N;K;L) problem.
Consider n = [n1; n2; : : : ; nK] the set of locations asso-
ciated to xn, a subsample of the L � BL signal x. From
(1), x is fully recovered due to the non-singularity of F,

x = F
�1
X (9)

=
L�1X
l=0

flXl (10)

= FLXL (11)

where FL is the matrix formed by the columns fflg
L�1
l=0 of

F
�1 = 1

NF
� and XL = [X0; X1; : : : ; XL�1]T are the non-

zero components of the spectrumX. Hencex belongs toVL.
Furthermore, note that xn is simply composed of the rows
n = [n1; n2; : : : ; nK ] of x. It is obtained by multiplying
equation (11) on the left by a matrixPn = [en1en2 : : :enK ]

T ,
where Pn is a projection matrix which projects x onto xn
and ei is the N � 1 canonical base vector. Hence,

xn = Pnx (12)

= PnFLXL (13)

A priori,XL is unknown and therefore an expression which
gives XL in terms of the observed values, xn, is desired.
DefineMn = PnFL, the matrix composed of rows fnigKi=1
and first L columns of F�1. Then,

xn = MnXL (14)

M
�

n
xn = M

�

n
MnXL (15)

) XL = (M�

n
Mn)

�1
M

�

n
xn: (16)



(M�

n
Mn)

�1 is the generalized inverse and exists since the
columns of FL are linearly independent.
Hence to verify if a set of locationsm = [m1;m2; : : : ;mK ]
is a solution to the (N;K;L) problem we must verify that
xn 2 ProjSK(m)VL. Algebraically, this is equivalent to ve-
rifying that

xm =Mm(M�

m
Mm)�1M�

m
xn (17)

is equal to xn or equivalently,

(Mm(M�

m
Mm)�1M�

m
� I)xn = 0: (18)

The latter gives a sufficient condition for the existence of
a solution. A closed form formula for the solution is obta-
ined by solving the system of K nonlinear equations in (18)
with respect to the K unknowns, m = [m1;m2; : : : ;mK ].
Since the system is nonlinear, it may admit more than one
solution.1

4. SOLVING METHODS

In this section, we present three methods to numerically solve
the (N;K;L) problem. The optimality of a solution m is
tested by verifying if the `2-norm of equation (18)

E(m) = jj(Mm(M�

m
Mm)�1M�

m
� I)xnjj (19)

equals zero for the Exhaustive method or E(m) is minimi-
zed for the Random Search and Cyclic Coordinate methods.

4.1. Exhaustive Method

An elementary way to solve the (N;K;L) problem is using
an exhaustive search approach. This method consists in ve-
rifyingequation (19) for all

�
N
K

�
sets of locations. From The-

orem 3.1 since some sets of locations are just shifts of each
other, we put these sets in one class and elect a representa-
tive for each class. The representative satisfying equation
(19) withE(m) = 0 is a solution of the (N;K;L) problem.

4.2. Random search (RS) and Cyclic coordinate (CC) method

The random search method is an iterative descent algorithm.
A component of the location set is perturbed according to a
probability distribution. If the cost function (E(m)) of the
perturbed solution decreases, we keep perturbing the same
component. Otherwise we perturb another component and
continue this way until a global or local minimum is found.

Algorithm 4.1 Random search method
Initial Step:

Choose an initial set of K locationsm1, and let m =m
1,

j = 1. Go to general step.

1If K = L then there is an infinite number of solutions. This is
due to the fact that the equivalent condition of existence is the identity,
MmM

�1
m

= I , whereMm is a square matrix.

General Step:

1. Obtain m2 by perturbing component j of m by f+1;�1g
with probability 0:5. Go to step 2.

2. If E(m2) = 0 thenm =m
2 . Go to step 3.

If jE(m2)� E(m)j = 0, then go to step 3.
If E(m2) < E(m1) then m =m

2;m1 =m
2 and repeat

step 1. Otherwise, j = j + 1;m = m
1. If j � K repeat

step 1.

3. If E(m) = 0 then m is global minimum. Otherwise it is a
local one. Stop.

The cyclic coordinate method is similar to the gradient
descent but does not require any derivative information. It
uses the coordinate direction axis as the search directions. It
differs from the Random search method in that the perturba-
tion is not probabilistic but deterministic.

Algorithm 4.2 Cyclic coordinate method
Initial Step:

Let d1; : : : ;dK be the coordinate directions, where di is
1 � K vector with value 1 in position i, and 0 elsewhere.
Choose an initial set of K locationsm1, and letm =m

1 ,
j = 1. Go to general step.

General Step:

1. m is obtained by perturbing component j of m1 by

�j = arg min
�2f�1;0;1g

fE(m1 + �dj)g;

m =m
1 + �jdj . Go to step 2.

2. If E(m) = 0 then go to step 3.
If jE(m1)� E(m)j = 0, then go to step 3.
Otherwise j = j + 1;m1 =m. If j � K then repeat step
1. If j > K then j = 1 and repeat step 1 .

3. If E(m) = 0 then m is a global minimum. Otherwise it is
a local one. Stop.

Both methods do not guarantee a global minimum. When
stuck in a local minimum, a random set of locations is gene-
rated and the methods are repeated. The tested algorithm co-
mes to a halt when a global minimum is obtained or an upper
bound on the number of local minimum is exceeded.

5. EXPERIMENTS

In this section, we do some experiments on the algorithms
proposed in Section 4. All methods need to calculate the va-
lue ofE(m)which involves matrix multiplicationand matrix
inverse operations on matrices of sizeK�L;K�K, respe-
ctively.
The exhaustive search method is certain to find a solution.
It is most time consuming when the number of unknown lo-
cations K is close to N=2 which is due to its combinatorial
nature.



5.1. Subsample locations with jitter

As mentioned in the introduction, the importance of finding
the unknown locations is due to the presence of jitter in the
data. Jitter occurs when the sample values location is mista-
ken for another location: xni = xni+j , where j is the jitter
and the ni are uniformly spaced. Different types of jitter are
described in [2]. We applied the RS and CC methods on data
with jitter around a correct value following a symmetric pro-
bability distribution,

P (j = �1) = p; P (j = 0) = 1� 2p:

This corresponds to taking samples around multiples of a sam-
pling interval , but with a certain time location uncertainty.
Figure 2 shows that the percentage of finding the correct lo-
cations decreases with the probability of the jitter. Also, the
CC and RS methods find solutions to (N;K;L) = (16; 4; 2)
problem on average 82%, 52% of the time, respectively. The-
refore the Cyclic Coordinatemethod is less likely to get stuck
in a local minimum.
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Figure 2: Percentage of finding a global minimum for CC and RS
methods with symmetric probability distribution for jitter, N =
16;K = 4; L = 2, 100 simulations on 50 different signals.

5.2. Subsample locations with unknown shift

As a practical example, consider the following setup. Sup-
pose two photographs of a scene are taken, where one is a
shifted version of the other, but with unknown shift. Com-
bining the two sets of data and verifying equation (19) for all
possible shifts, the correct shift is determined and the image
may be reconstructed using irregular sampling. For compu-
tational reasons, we ran a one-dimensional example to see
how well the shift can be recovered. Suppose the signal is
of length N = 256 and band-limited to L < 64. Take two

sets of samples at locations 8n and 8n+k; 0 � n � 31; 1 �
k � 7, with shift k unknown. This gives an irregular set
of K = 64 locations. Figure 3 shows E(m) for k vary-
ing 1 to 7 (where the optimal shift is k� = 4) and various
L; (33 � L � 63). Clearly, k� = 4 can be recovered and
E(m) is least for L closer to K.

6. CONCLUSION

We have treated an essential element of the irregular sampl-
ing problem, which is that of not knowing the locations of
the subsamples. Most of the fast methods already develo-
ped assume the knowledge of these locations but in certain
applications where there is jitter in the data these locations
are unknown. The solving methods we described find these
unknown locations.
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Figure 3: Finding the unknown shift, k, for signal length N=256,
with varying band-limit L; 33 � L � 63.


