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ABSTRACT
Audio information classification becomes a very important task
for such purposes as automatic keyword spotting and other
content-based audio-visual query system.  In this paper, we
describe a fast and accurate audio data classification method on
MPEG coded data domain.  Firstly silent segments are detected
using a robust approach for different recording conditions. Then
the non-silent segments are classified into three types, music,
speech, and applause using temporal density, bandwidth and
center frequency of subband energy.  In order to be robust for a
variety of audio sources as much as possible, we use Bayes
discriminant function for multivariate Gaussian distribution
instead of manually adjusting a threshold  for each discriminator.
In the experiment, every one-second MPEG audio data is
classified and about 90% of audio and speech segments have
been successfully detected. As for the detection speed, less than
20% of MPEG audio decoding processing power is required.

1. INTRODUCTION

Construction of efficient audio-visual data analysis is very
important for content-based indexing, browsing, and retrievals
from multimedia databases.  For example, as a fundamental
analysis for video signal, shot segmentation algorithms from
video signal such as MPEG video have been proposed[1,2].  In
these algorithms, shot boundaries including video effects such as
dissolve and wipe transitions are detected on coded data domain.

Recently research on video segmentation combined with audio
signal analysis[3-7] has also been reported.  For example, in [3]
video is segmented into shot level and audio information in each
shot is classified into dialog, non-dialog, and silent.  Then in [4],
the above method is incorporated with speaker identification
where only dialog shot is investigated. The other proposals in
[5,6] directly use audio information to enhance video shot
detection accuracy.  For example, it was reported in [6] that since
most of shot boundaries in TV news correspond to silent
segments, silent detection may improve scene change detection
accuracy in this kind of video source.

As for audio indexing, several methods have been reported[3,6,8-
10].  For example, in [9], audio source is classified by measuring
a similarity between input sound and predefined variety of
sounds. In [8], speech/music classification is performed by
exploiting lopisidedness of ZCR distribution where speech
signals show a marked rise that is not common for music signals.
In [10], 5 to 13 feature vectors including such features as cepstral
coefficients are used to classify audio source in order to enhance

the classification accuracy.  Although all the above analyses have
been conducted for PCM data so that decoding process is
required for coded data before the analysis, reference sited in [3]
proposed audio classification on MPEG subband domain.  In this
algorithm, classification is performed thresholding such
discriminants as pitch and band energy ratio using subband data
which can be extracted from coded bitstream without any high
processing power[11].  Although thresholding technique is
relatively easy to handle when the number of thresholds is small,
it becomes very difficult to handle when the number of
thresholds is increased in order to enhance the classification
accuracy or increase the number of classes.

In this paper, we propose a fast and accurate audio classification
algorithm from MPEG coded data based on statistical
discriminant functions.  MPEG audio data is classified into 4
classes, silent, speech, music, and applause segment.  Although
noise or other sound effects like rain and car engine sounds may
be also important features for audio indexing, we include
applause sound for the classification on the reason that applause
segments can be used for such semantic segmentation as
boundaries of music pieces[9] and talk shows.  Temporal
resolution of audio classification was empirically chosen to be
one second because the length of speech and music is much
longer than that and subjectively manual classification can be
carried out without any difficulty for more than one second.

In the following sections, classification algorithm of silent,
music, speech, and applause sounds from MPEG coded audio
data are discussed.  Then the classification experiments and their
results are shown using several TV programs.

2. CLASSIFICATION ALGORITHM

2.1 Silent Segment Detection

When compared with silent and non-silent segments, silent
segments usually have much smaller energy distributions than
that of non-silent segments.  Therefore, most of silent segments
can be distinguished from that of non-silent by simple
thresholding of total energy in a segment.  However, this method
may fail to detect non-silent segments with low loudness by fade
effect or different recording conditions.

The other differences of silent and non-silent segments are that a
non-silent segment normally has a certain level of variation in its
loudness in the lower frequency, whereas a silent segment has a
much smaller variation.  Figure 1 (a) and (b) show examples of
silent and non-silent MPEG audio subband energy in time and
frequency domain. As can be seen in the figures, most of



significant subband energy is confined to lower subbands in both
cases and the variations of subband energy can be compared
easily.  We use the variance of subband 0 energy for silent
segment detection.  In addition, since instantaneous audio
spectrum can be regarded as stationary, we extracted one of
subband 0 data for each MPEG audio frame. This subsampling of
subband data in time–frequency domain can enhance detection
speed (38 data for 1-second MPEG layer II data at 44.1kHz)
while it can maintain detection accuracy.

The variance of subband energy, σe
2 can be obtained as
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where, N is a total number of frames in one second and <> is
averaging operation.  sbi,j(n) is a subband sample at band i, group
j in a frame n (we chose j=0 in the experiment).  For example, in
MPEG1 layer II, there are 1152 samples in a frame, therefore,
j=0,..35.

The silent segment is declared if σe
2 is smaller than the

predetermined threshold.  The further processing in the following
sections is applied only for the non-silent segments.

2.2 Music / Speech Characteristics

Figures 2(a) and (b) show examples of temporal energy
distributions of speech and music, respectively. Here, subband
energy is accumulated for all 32 bands and defined as r-sample.
Therefore the r-sample in the horizontal axis represents every
other 32-subband sample data.  As can be seen in the figures,
when speech is compared with music, speech has intermittent
energy distribution whereas music has continuous distribution
except for such cases as dram solo play.  In addition, the number
of silent r-sample varies widely in speech, whereas in music it is
small and its variation is also small.

In order to measure the temporal energy density, we firstly
normalized subband energy data.  Each subband energy value of
r-sample is compared with a predetermined threshold and
normalized to “1” if it has a higher value, otherwise set to “0”.
Normalized r-sample data for Figure2 (a) and (b) are shown in
Figure2 (c) and (d), respectively.  Then each silent r-sample (“0”
sample) section is defined as si (i is section number) and the
number of r-sample within the silent section is counted. The
energy density De is measured as log value of the variance of
series si.
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where M is number of silent sections in one second.  Logarithm
form is used in order to accommodate to Gaussian distribution
described in later section.

Other characteristics of speech and music are that the bandwidth
of speech is usually narrower than that of music. This property
can be easily understood in subband domain.  For example, in
our preliminary experiment, music signal usually has wide range
distribution with up to subband number 20 (which corresponds
to about 14kHz when 44.1kHz sampling) or more, when coded at
around 100kbit/s per channel.  On the other hand, the subband

range in speech rarely goes beyond subband number 10.  In order
to investigate the bandwidth of subband quantitatively, we
calculate an average number of subbands (ANsb) with significant
level.  If a one-second segment has broad bandwidth like in
music, then ANsb becomes large.  This value can be obtained as
follows.  Firstly, a group of whole subbands (sb0,j(n) - sb31,j(n), j
is a group number as stated in section 2.1) is sampled from
MPEG frame data (j=0 is used in the experiment).  Then the
following normalization is employed for subband energy in order
to absorb sound level dependency on audio source.  Here,
normalized subband energy, ENi,j(n), is defined as
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where max() operation is performed for subband i=0,1..31 at
group j, frame n.  Then significant subband ssbi,j(n) is determined
as “1” when a normalized subband energy has higher value than
the predetermined threshold, otherwise set to “0”.

Then, ANsb is obtained as
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Here, nsf is number of frames with at least one significant
subband.

2.3 Applause Characteristics

As described earlier, applause sound can be regarded as start or
end point of concert, talk show, or sit-com.  Therefore, the
detection of applause sound may be useful for detection of
“audio scene change” as well as for the further content-based
analysis.  When compared with speech and music, applause
sound has continuous similarity and center frequency is relatively
stable.  Therefore we estimate the center frequency of subband by
calculating the subband centroid for each MPEG audio frame and
obtain its average and variance for one second.

The subband centroid cf(n) of MPEG audio frame n can be
calculated as
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Then its average and variance, <cf> and σ2
cf can be obtained as
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Figure 3 shows the distribution of applause sound in average
subband centroid and its variance domain.  As can be seen from
the figure, both the ranges of average frequency and its variance
are smaller than the other sounds.

2.4 Discriminant Function

In order to discriminate music, speech, and applause, we applied
Bayes discriminant function for multivariate Gaussian
distribution[12].
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Here, x is input data vector, mk is mean vector of class k, Ck is
covariance matrix of class k, and p(ωk) is a priori probability of
class ωk. We use four dimensional vectors described in the above
sections 2.3 – 2.4.  These are subband energy density De, average
number of subbands ANsb, and average and variance of subband
centroid, <cf> and σ2

cf, respectively.

3. EXPERIMENT

Firstly, two TV programs for 1000sec in total coded by MPEG1
layer II at 112kbit/s per channel with 44.1kHz sampling were
used for supervised training.  Each one-second audio was labeled
manually by listening, and data were collected for each class.
Although there were mixed sound segments in time and
frequency domain, subjectively dominant sound was chosen in
the labeling.  Then the parameters in discriminant function for
each class in Equation (8) was determined.  The threshold values
for normalization are also determined in the above sequences.

Figure 4 shows a block diagram of detection flow. MPEG coded
data is decomposed into subband domain and each one-second
data is investigated.  Only non-silent segments are forwarded
further, and then speech, music and applause discrimination is
performed.  Experiment has been conducted using several MPEG
coded TV programs different from the training sequences. They
include TV news program, talk show, and music program with
audience.  Table 1 shows the detection results. Here, correct
detection ratio is defined as (number of correctly detected) /
(number of correct segments) x 100.  Similarly, false detection
ratio is defined as (number of false detection) / (number of
detected segments) x 100.  Although silent and speech segments
are successfully detected, detection accuracy of music and
applause is not so high as that of speech.  In addition, false
detection ratio of applause is large.  After analyzing these results,
we found that miss classification was mainly occurred in between
music and applause.  Many music segments were classified as
applause.  Since applause sound may also have high subband
energy density like music, it resulted in low detection accuracy of
music and high false detection ratio of applause.

Improved performance can be obtained by separating applause
detection from speech/music detection.  Figure 5 shows the block
diagram of improved detection flow. After the silent segment
detection, applause sound detection is performed using Equation
(8).  In this case, applause and non-applause classification is
performed.  Then only non-applause segments are further
classified into speech and music.  The results are shown in
parentheses in Table 1. When compared with the previous
method, detection accuracy of music and false detection of
applause are greatly improved although detection accuracy of
speech and applause has been slightly decreased.

As for the errors in silent segment detection, they were mainly
occurred in mixed sound segments.  For example, when one-
second sounds are composed of end of speech and silent
segment, some of the results are opposite in manual and
proposed method.  For these kinds of sounds it may be
appropriate to classify them as transition sound by introducing
discriminant like similarity to neighboring segments.  This also

applies to miss classification of applause.  In music classification,
segments with intermittent sound like drum solo are often
classified as speech.  In this case, improvement of classification
accuracy can be expected by incorporating such feature vector as
rhythm detection with a certain length temporal windows.

As for the detection speed from MPEG bitstream, 16.1% of CPU
time is used when compared with full decoding of MPEG audio
data using about 160MIPS HP9000 workstation.

4. SUMMARY

We have proposed a very fast and accurate MPEG audio
classification algorithm on subband data domain.  Classification
was performed for silent, speech, music and applause segments at
one-second unit.  After discriminating non-silent segments,
MPEG audio stream was classified using Bayes discriminant
function for multivariate Gaussian distribution.  In the
experiment, although 3% to 16% false detection ratios are found
in each classification, music and speech have been successfully
detected at around 90% accuracy.  Since less than 20% of MPEG
audio decoding CPU time is used in the classification, it is
expected to be used for preprocessing of automatic transcription
in digital audio archive, or it can be realized as fast audio-visual
indexing tool of MPEG data by combining such analysis as video
scene change detection on MPEG data domain.
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(a) Silent source

(b) Non-silent source

Figure 1. Examples of (a) silent, and (b) non-silent
MPEG audio subband energy.
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(a) Energy distribution of speech
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(b) Energy distribution of music
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(c) Normalized energy distribution of speech
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(d)Normalized energy distribution of music

Figure 2. Energy distribution and normalized energy
distribution of r-sample for speech and music sources
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Figure 3. Applause and other sounds in average subband
centroid and its variance domain
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Figure 4. Block diagram of MPEG audio classification
flow
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Table 1. Classification results
Class Silent Speech Music Applause
Correct(s) 43 1053 177 27
Detect(%) 90.7 97.1(93.3) 76.3(88.1) 81.5(74.1)
False(%) 13.0 3.4(3.5) 9.8(16.4) 41.0(14.8)


