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Dominique B́eréziat, Isabelle Herlin

INRIA Rocquencourt,
BP 105, 78 153 Le Chesnay Cedex, France

Dominique.Bereziat@inria.fr
Isabelle.Herlin@inria.fr

Laurent Younes

CMLA, ENS Cachan
94325 Cachan Cedex, France

Laurent.Younes@cmla.ens-cachan.fr

ABSTRACT

Nowadays, motion estimation is one of the main subjects in
computer vision. Many methods developed to compute mo-
tion make use of the optical flow hypothesis. These meth-
ods usually fail to capture motion of objects with intensity
evolution. We propose a new approach to solve the motion
computation problem with a different type of constancy hy-
pothesis. Because we are mainly interested in deformable
moving structures, we postulate that such a structure, within
a temporal image sequence, is associated with a constant
volume or a constanttotal intensityover time. We call this
postulatethe volume conservationhypothesis. Results are
displayed for clouds motion and deformation on meteoro-
logical satellites images.

1. INTRODUCTION

Motion computation on image sequences is currently un-
der extensive investigation in computer vision science. We
may distinguish two categories of methods: methods that
are dedicated to detect regions in motion and methods that
give an estimation of the velocity vector field, like correla-
tion or optical flow methods. Correlation methods [6] con-
sist of computing a correlation within a small window and
finding the best fit between two images. This method is in-
teresting in case of small object structures (included within
the window) but is very sensitive to the window size pa-
rameter. The optical flow method, introduced by Horn and
Schunck [3], assumes that a moving pixel keeps the same
grey level value over time, which can be mathematically
formulated by the equation:

dI

dt
= 0 (1)

whereI is the grey level value of the pixel. Using the chain
rule for derivation, we have:

rI:w + It = 0 (2)

wherer designs the spatial gradient operator,It =
@I

@t
and

w = (
@x

@t
;
@y

@t
) represents the velocity vector. To solve this

equation, many techniques are available: a variational for-
mulation [3], a Markov random field approach [5] or a para-
metric modeling [1], [4]. Optical flow methods have two
main drawbacks. First, the optical flow hypothesis is not
necessarily valid for some applications. Then, optical flow
holds best for rigid objects. A non negligible class of ob-
jects motion cannot be studied within this framework.

In section 2 we present a new hypothesis based on a to-
tal intensity principle with a volume conservation constraint
equation. Resolution and validation are discussed in sec-
tion 3. In section 4 we present an example (a meteorological
infrared image sequence) where the optical flow hypothesis
is no more valid but where the volume conservation hypoth-
esis does successfully apply.

2. A VOLUME CONSERVATION HYPOTHESIS

2.1. Model

As outlined in introduction, motion estimation with optical
flow may be incorrect if the grey level constancy hypothesis
is not verified. To overcome this difficulty, a good solution
is to consider the motion of objects rather than that of the
pixels, as performed by optical flow. It can be formulated
in the following way: thetotal intensityof objects,i.e. the
sum of grey level values within the object, is temporally
constant. This has to be compared to the optical flow hy-
pothesis: the intensity of each pixel is temporally constant.
If one considers the intensity axis as a third dimension, our
assumption becomes avolume conservation hypothesisas
depicted on figure 1.

The definition of an elementary volume element,i.e.,
the volume attached to a pixel(x; y) at time t of surface
ds = dxdy is given by:

dV = I(x; y; t)dxdy
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Figure 1:Motion model: the “volume” or “total intensity”
is constant.

where(x; y) are the coordinate of the pixel andI(x; y; t)
its grey level value at timet.

2.2. The volume constraint equation

Lets us show that the volume conservation statement yields
a mathematical constraint on pixel’s velocities.

Let'(x; y; t) be the spatial position at timet of the pixel
being at position(x; y) at timet = 0. In fact,' describes
the spatial evolution of a given pixel over time and therefore
@'

@t
= w is its velocity. LetVt be the volume or thetotal

intensityof an objectV at timet:

Vt =

Z Z
V

I(X;Y; t)dXdY (3)

It can be formulated as a function of trajectories' by
applying the change of variable(X;Y ). Volume equation
becomes:

Vt =

Z Z
V

I('(x; y; t); t)J('(x; y; t))dxdy

whereJ is the Jacobian operator. As we assume that a
volume element stays constant over time, the volume con-

servation hypothesis is formulated by:
dVt

dt
= 0 then be-

comes: Z Z
V

d

dt
[(I � ')J(')]dxdy = 0

Using the approximation
d

dt
J(') = div(

d'

dt
)J('), mean-

ing that the deformation has to be small, we obtain:
Z Z

V

[
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)]J(')dxdy = 0

The previous equation is verified when:

@'

@t
rI � '+ It � '+ I � ' div(

@'

@t
) = 0

Remember that
@'

@t
= w, our condition can be rewritten

as:

wrI + It + I div(w) = 0 (4)

that is called the volume constraint equation.
This condition is very close to the optical flow equa-

tion (2). A new term,I div(w), appears in it, modeling the
spatial deformation ofw. Wildes [7] obtains the same for-
mulation in a different context of fluid motion modeling.

3. RESOLUTION

3.1. Solve the volume conservation equation

The problem is to determine the value of the apparent vec-
tor field w. We use a variational formulation to compute
the solution of equation (4). We build a functional whose
minimum value with respect tow gives the solution,wmin:

E1(w) =

Z



(w:rI + It + I div(w))2dxdy , (5)

Since equation (4) is underdetermined, as the vectorw

represents two unknown values, it is necessary to use an
additional constraint to solve it. So we build a second func-
tional that constrains spatial deformations ofw and over-
constrains equation (4):

E2(w) =

Z



(jruj2 + jrvj2)dxdy , (6)

withw = (u; v) = (
@x

@t
;
@y

@t
). Finally we minimize with

respect tow the following functional:

E(w) = E1(w) + �E2(w) , (7)

where� is a tuning parameter between the two terms,
weighting the importance of the regularizing termE2.

The minimization of the functionalE yields a set of
Euler-Lagrange equations (see [2]):
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(I(wrI + It + I div(w))) � �4u = 0

�
@
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(I(wrI + It + I div(w))) � �4v = 0

Finally, we use the evolution equations associated to the
Euler-Lagrange equations to computew.

3.2. Validation

The volume conservation hypothesis has been applied to
synthetic sequences in order to validate the model. The syn-
thetic sequence used in figure 2 shows a growing square.
It grows simultaneously in the four directions and the grey
level values inside the square change over time in order to
respect the volume conservation hypothesis (from clearer to
darker).



As we can see in the figure 2, the method has estimated
the correct vector field of the square. Notice that there is
no motion estimation in the background because the grey
level values are always equal to zero. Inside the square, we
get non zero vectors, but the norm of these vectors is close
to zero and can not be displayed because these values have
no signification. This result has to be compared with the
optical flow method on figure 3. This method fails because
there is no grey level value conservation.

Figure 2: Volume conservation computed on a growing
square sequence.

Figure 3:Optical Flow computed on a growing square se-
quence.

4. APPLICATION

The model has been applied to meteorological infrared im-
ages. On these images, grey level values measure a temper-
ature. There are two kinds of structures: the ground and the
clouds. The ground has no interest for us because there is
no motion to be detected (satellites providing these data are

geostationnary). The cloud temperature has an important
property: it is related to its elevation. So the grey level value
provides the third dimension useful in the volume conserva-
tion model. We use the volume between the top of the cloud
and the ground instead of the real volume of the cloud. Fig-
ure 4 shows the volume conservation hypothesis applied to
the cloud structure.
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Figure 4:Conservation of cloud between two dates.

Figure 5 displays in background, the first image of an
infrared sequence. This sequence focuses on a vortex evo-
lution over time. Computation of optical flow and volume
conservation methods are done between two successive im-
ages. The results are displayed on figures 5 and 6 and we
can see that those provided by the volume conservation hy-
pothesis are better than those obtained with the optical flow
equation (figure 6):

� detection of singular points: optical flow model can
not detect any singular point. The volume conserva-
tion model detects several singular points. It is very
important because these points give a good estimation
of the cloud motion. For example, our method locates
a singular point at the center of the vortex (fig. 6), that
it is very interesting in a tracking point application.

� the optical flow method detects motion in darker zones
i.e. zones where there is no cloud and no motion. The
volume conservation model does not detect motion in
these zones because their grey level values are almost
constant and close to zero,

� experimentation of the volume conservation method
on a complete infrared sequence shows a robust result
over time,

� optical flow smoothes the velocity field: one can see
on figure 5, optical flow gives continuous values over
the vortex and boundaries vortex and therefore detects
velocity on the ground. At the opposite, the volume
conservation is an object approach, and we obtain a
non continuous velocity field over the vortex frontier.



Figure 5:Result of Optical flow method.

Figure 6: Result of Volume conservation method. Squares
show some singular points.

The volume conservation method seems better adapted
in the meteorological context than the optical flow method
due to the object deformable modeling that optical flow can-
not handle.

5. CONCLUSION

In this paper, we presented a new method for motion com-
putation. Contrary to optical flow, that is a pixel approach,
our method considers objects through the volume conserva-
tion equation (4) derivated from a total intensity principle in
order to enhance the computation of deformable structures’
motion. As noticed in the paper, the volume conservation
method has to be applied to deformable structures which
must have a total intensity constant over time. It is the case

with clouds on meteorological infrared images as seen in
section 4 or with synthetic scenes such as seen in subsec-
tion 3.2.

In a context like infrared data, we also get the follow-
ing problem that gives us research perspectives: the images
contain two type of region in which grey level values have
different signification. There are structures where the vol-
ume conservation hypothesis is valid: these are deformable
objects with a total intensity remaining constant. There are
also structures where the optical flow hypothesis applies:
these are objects where grey level value is constant over
time. Thus, a mixed model should be used: first, a volume
conservation model describing moving deformable struc-
tures (as cloud in meteorological data) and, for example,
an optical flow model describing others structures. But it
requires a pre-segmentation process in order to obtain a bi-
labelled image describing zones where optical flow is valid
and zones where volume conservation zone is valid. This
part is currently under development.
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