
 ABSTRACT
A low-power, large-scale parallel digital video (DV) [1] encoder
architecture for a single-chip digital CMOS video camera is dis-
cussed in this paper. This architecture is based on the single chip
CMOS camera MPEG-2 encoder architecture proposed in [2]
with an emphasis on formatting and streaming of the compressed
data. The architecture proposed here supports the 625/25 format
of 720x576 pixels per frame. When clocked at 40 MHz, this
architecture delivers a processing performance of 1.8 billion oper-
ations per second (BOPS) capable of supporting a frame rate of
25 fps as well as additional image enhancement processing. Low
power consumption is achieved by the use of a parallel architec-
ture and low-power circuit design techniques. When implemented
in a 0.2 micron CMOS technology at a 1.5 V supply voltage, the
parallel architecture consumes 45 mW providing a power effi-
ciency of 40 billion operations per second per Watt.

1. INTRODUCTION
Traditional video compression systems approach performance
enhancements by either reducing the cycle time or increasing pro-
cessing parallelism. However, these enhancements are often made
assuming video data is stored externally. This results in a large
power overhead from data transfers alone. Furthermore, as pro-
cess technology scales down, on-chip data transfer becomes more
power efficient than off-chip transfer, because the power for I/O
operation does not scale with process technology. Better process
technology and the ability to embed DRAM with the processing
circuitry circumvent redundant off-chip data transfer while pro-
viding high density buffering of video images. A large-scale par-
allel processing architecture is proposed. This architecture takes
advantage of the high throughput parallel access to on-chip mem-
ory to achieve high computational throughput and low power con-
sumption.

1.1 Architecture Overview
The proposed architecture is based on the architecture proposed
for MPEG2 encoding in [2]. Figure 1 (sizes are not drawn to
scale) shows how the processing elements and the photo sensors
are integrated. The Frame Buffer (FB) consists of embedded
DRAM to buffer images at high density. The FB is partitioned
into 45 columns. This results in a column width of 16 pixels. Each
column is separately addressed and accessed by an individual
Processor Element (PE) in the processor array. An intrinsic
advantage of using such processor configuration for image pro-
cessing is that processing constraints of individual PEs are not
affected by horizontal scaling of the image resolution. It is also
possible to scale image resolution vertically by placing PEs on the
other side of the photo sensors and partition the sensor vertically
in two. This configuration will be explored in future works.

To simplify instruction fetching, instructions for controlling the
PEs are pipelined from the Array Processor RAM (AP-RAM)
from the left-most processor towards the right. Pipelined PE
instructions are stored in separate physical memories from the
main controller (MC) instructions. This partitioning of codes
reduces programming complexity by addressing different archi-
tectural issues at different levels. Data generated by the PE is
summarized by the Output Comparator (OC) and fed back to the
controlling units. This data can be further processed by either
controllers (the MC or the Array Processor Controller, APC) or
stored into the Output Frame Buffer (OFB) for streaming. Lookup
coefficients are stored into the lookup RAM (L-RAM). An L-
RAM is shared between a number of PEs to reduce area as well as
power overheads.

This architecture configuration introduces several advantages.
First, data transfers are internalized and the exported data is com-
pressed. This leads to a significantly lower power consumption
than a comparable multi-chip solution where uncompressed data
streams are transferred between chips. Second, by increasing the
number of processing elements, the processing requirement per
image column is reduced. This leads to a lower clock rate and
supply voltage, resulting in an overall reduction of power con-

Table 1: Image processing algorithms supported‡
• Color conversion • White balancing
• Gamma correction • DCT/IDCT
• 2-D FIR filtering • Color space conversion
• Quantization • Motion estimation†
• Sub-band coding • Color subsampling
• Variable length coding • Median filtering

Frame Buffer

Photo Sensor
720x576

Lookup
RAM

Lookup
RAM

...

...

Output Comparator

Controller
RAM

Main
Controller

Array
Processor

RAM

Array
Processor
Controller

Output
Frame
Buffer

Input
Program

Output

Stream

Processor
Array

Figure 1:Digital CMOS camera architecture

LOW-POWER DV ENCODER ARCHITECTURE FOR
DIGITAL CMOS CAMCORDER

Jeff Y. F. Hsieh and Teresa H. Y. Meng

Electrical Engineering Department
Stanford University

Stanford, California 94305, USA

† May require some modifications to the architecture



sumption. Third, this architecture can be programmed to process
image algorithms other than MPEG2 and DV (Table 1). This pro-
vides the flexibility needed by camera product developers to
determine optimal processing and image quality tradeoffs in soft-
ware rather than in hardware. The cost of development therefore
can be significantly reduced. Hardware reuse also implies that
these single-chip designs can conceivably be used in different
applications between different host modules. Programmability
also implies a separation of performance optimization between
hardware and software, which parallels the development of the
microprocessor industry.

1.2 DV vs. MPEG2
A variety of video compression technologies exist today in which
MPEG2 has been widely accepted by numerous applications. The
DV standard is also emerging as a popular alternative in digital
video compression. These two technologies have fundamental
differences in their coding strategies that are beneficial to the spe-
cific application domains they serve. MPEG2 supports a compres-
sion ratio of greater than 100:1, which is suitable for video
conferencing and video archiving where data bandwidth is lim-
ited. However, MPEG2 is not resilient to error propagation due to
a strong dependence of past images. DV, on the other hand, is
developed for acquisition of video where a high capacity video
storage medium is assumed (i.e. mini tape cassettes). It has a
compression ratio of approximately 3:1 to 5:1 and is suitable for
applications such as digital camcorder, broadcasting, and video
editing. These applications and the physical constraints of the
tape medium requires that the DV standard be highly robust to bit
errors and allow for quick access to stored data via trick plays
(high speed bi-directional linear searches). This is achieved with
independent coding of macroblocks and a feedforward compres-
sion scheme.

A summary of the DV encoding algorithm is discussed in section
2.1 and 2.2. The proposed single-chip DV camera architecture is
presented in section 3. Finally, issues and considerations relating
to programming the PEs and the controllers are discussed in sec-
tion 4.

2. DV ALGORITHM OVERVIEW
The DV encoding algorithm is based on a feedforward video
compression scheme. A detailed discussion on the DV encoding
algorithm can be found in [1]. A brief outline of the DV algorithm
is provided below.

2.1 DV Formatting
The image (720x576 pixels) is first formulated into macroblocks
(MB) each containing 8x8 pixel blocks of 4 luminance (Y) blocks
and 2 chrominance blocks, Cr and Cb. In the 625/25 system, 4:2:0
color subsampling is employed, whereas, in the 525/30 system,
4:1:1 color subsampling is employed. Five MB’s are put together
to form a segment. These 5 MBs are “shuffled” meaning that they
are taken from different parts of the image as shown in Figure 2.
Motion adaptive discrete cosine transforms (DCT) are performed
on each of the 8x8 blocks in the MB’s. These MB’s then undergo
error correction coding and channel modulation, formatted into
synchronization blocks, and finally redistributed, “re-mapped”,
into superblocks (a cluster of 3x9 MB’s). These superblocks are
then mapped into tracks and written to the cassette medium.

2.2 Motion Adaptive DCT
The motion adaptive DCT employs a motion detector from which
a motion indicator signal is generated. Based on this indicator,
one of two types of DCT algorithms, a standard 8x8 DCT algo-
rithm or a motion based DCT algorithm, is applied. The motion
based DCT algorithm performs the normal DCT algorithm on the
horizontal pass and an N/2-point DCT algorithm [1] on the verti-
cal pass. The resulting DCT block and the corresponding motion
indicator are fed to the feedforward adaptive quantization unit.

2.3 Feedforward Adaptive Quantization
The goal of the feedforward adaptive quantization is to control the
post-compressed bit rate such that the compressed data from dif-
ferent segments is approximately fixed rate (as required by trick
plays). The feedforward quantization unit first computes the
“activity” (i.e. energy level or information content) of the DCT
block. This “activity” value is used to select the quantization class
associated with the block. There are 4 quantization classes and 16
quantization strategies used in the DV standard. After a quantiza-
tion class is chosen, the corresponding quantization strategies are
used to quantize the DCT block. The 16 quantized DCT blocks
are variable length coded and the total word lengths of the vari-
able length codes are extracted. These word lengths are combined
with word lengths from other MB’s belonging to the same seg-
ment to calculate the segment data rate. A quantization strategy is
chosen which corresponds to the segment data rate (calculated
based on that quantization strategy) that is closest to the ideal
“fixed” segment data rate. Lastly, the entire segment is quantized
with the chosen quantization strategy before DV streaming (error/
channel coding and formatting).

3. Single-Chip DV Camera Architecture
The proposed architecture is described in the context of the DV
algorithm requirements and issues discussed in section 2.

3.1 Controllers
There are two controllers (MC and APC) that controls signal and
data flows for the entire camera chip. The main controller (MC) is
the primary controlling unit whereas the array processor control-
ler (APC) performs simple decoding function to pipeline instruc-
tions to the PEs.

In addition to performing control monitoring, the MC also pro-
cesses data sent from the PEs through the output comparator
(OC). This allows a single controlling unit to handle output for-

0
1
2
3
4
5
6
7
8
9

10
11

MB

1

2

3

4

5

tr
ac

k 
i

column j
1 2 3 40

720 pixels, 45 MB’s

57
6 

lin
es

, 3
6 

M
B

’s

Figure 2:Selection of MBs for segment construction, “shuffling”.

Superblock



matting as well as streaming protocol thereby reducing program-
ming effort for streaming synchronization. The MC is separated
from the PE instruction pipelining control for the reason that MC
is needed to perform post-processing of compressed data. This
separation enables the MC to run in parallel to PE instruction
pipelining. In addition, this separation also implies a separation of
coding tasks into PE programming and MC programming which
results in the separation of the physical memory spaces for storing
PE/MC program codes. To reduce the amount of controlling over-
head, the PE instruction pipeline control unit (APC) is simplified
to perform simple branching and pipelining of instructions while
the MC performs an overall monitoring of the PE program flow
and processing status. This control overhead to the MC unit is
small compared to the processing overhead needed to post-pro-
cess the compressed PE data. As a result, an additional control
unit for monitoring the PE program flow is not required. Also,
since the MC does not have direct control over the PEs, the MC
needs to access status information from the PEs via the OC and
interprets the result to oversee the program flow of the PE instruc-
tion pipelining.

3.2 Output Comparator
The output comparator (OC) serves as a bridge between the con-
trolling units and the PEs. It delivers information both ways and
can be used for several controlling as well as data transferring
tasks. It is required by DV encoding primarily to transfer bit cost
information from the “shuffled” MB’s to the MC to perform opti-
mal quantization strategy search. It also serves to communicate,
to the MC, PE status information such as PE execution comple-
tion (for data dependent operations in which program codes are
stored in the PE program memory), lookup pipeline status, etc. It
is used by the MC to communicate the optimal quantization strat-
egy to the PEs. The OC is also needed in several other image pro-
cessing algorithms. Examples include auto whitening and auto
exposure control. Although data sharing is required across the
entire sensor array, the amount of data transfer is limited implying
s that OC is not a significant contributor to power consumption.

3.3 Processor Element Architecture
The PE architecture is illustrated in Figure 3. Since the DV algo-
rithm does not require access to image data belonging to other
image columns, a simple direct-memory-access (DMA) unit is
implemented. The DMA unit serves as an interface between the
PE and the frame buffer such that the DRAM access time is
decoupled from the processor cycle time.

The block visible RAM (16x16 pixels) and the auxiliary RAM
(8x8 pixels) provide small but flexible buffering of image blocks.
These local memories are addressed by a 2-D vector address with
an optional automatic offset compensation. This provides the flex-
ibility for implementing efficient algorithms such as fast DCT.
The block visible RAM can also be used to store 16-bit words.
This is needed for temporary storage of the DCT coefficients. The
auxiliary RAM provides a temporary buffer for buffering past
image pixels for motion detection calculation. It can also store
lookup coefficients in case the L-RAM cannot support the band-
width demanded by the algorithm.

The ALU consists of a 24-bit adder, a 12x12 bit multiplier, a 24-
bit barrel shift register, and a 24-bit accumulator. Two datapaths
feed the ALU to provide high processing efficiency. Data can be

retrieved from the L-RAM, the block visible RAM, the auxiliary
RAM, the register file, or the run-length zero counter. The register
file provide fast and efficient access to intermediate process vari-
ables.

VLC and quantization are the most computationally intensive
tasks in DV encoding. As a result, it is necessary to include a par-
tial implementation of VLC in hardware. The zigzag units and the
run-length zero counter are implemented to reduce the amount of
overhead associated with VLC. The zigzag units feeds the address
generation unit with hard-coded addresses. Two zigzag patterns
are stored in the zigzag ROM, one for stationary blocks and the
other for motion blocks. The run-length zero counter works in
conjunction with the zigzag units to compute run, amplitude pairs.
The output of the run-length zero counter can be sent directly to
the L-RAM to perform word length lookup.

The program control units provide instruction decode as well as
simple program flow control. Program flow control is needed only
during data dependent processing (e.g. VLC codeword construc-
tion). In the data dependent processing mode, the instructions are
locally stored in the program RAM.

The image column width is 16 pixels and is chosen based on the
width of the MBs. By making the column width the same as the
MB width, less programming overhead is needed to synchronize
the transfer of the bit cost, associated with the feedforward quan-
tization, to the MC.

3.4 Memory Requirement
DV requires 1 full sized frame and 4 partial frames of pixel mem-
ory. Part of the Frame Buffer (Figure 1) is a luminance frame
(720x576) of the past image used for motion detection. The FB
also contains three partial frames (see Section 3.5 below) with a
resolution of 720x96 for buffering a portion of the current image
in full color. The Output Frame Buffer buffers compressed data
which requires 4 to 5 times less memory than a full sized frame. It
is approximately 146KB. Memory requirement for DV is realiz-
able with existing embedded DRAM technology.

16x576 Column Pixel Memory

ALU

Register File

Program
RAM

Inter-processor
Communication Unit

T

Accu

To output comparator

Figure 3:Array Processor architecture.

To L-RAM

Program
Decoder

To L-RAM

Block
Visible
RAM

Auxiliary
RAM

DMA

Address
Generation

Unit

Zigzag
ROM

Zigzag
Counter

Run-length
Zero Counter



3.5 Memory Optimization
Due to the need to buffer images on-chip, it is strongly desirable
to optimize the memory usage for the algorithm at hand without
compromising complexity. For DV encoding, buffering of newly
acquired pixels can be a large overhead if the entire image needs
to be buffered. An alternative buffering scheme is proposed to
reduce the amount of buffering by a factor of 6. This scheme is
illustrated in Figure 4. Memory usage of MB shuffling is analyzed
to determine the minimum amount of memory to buffer the shuf-
fled MB’s. As shown in the figure, this requirement is satisfied
when 6 full rows of MB’s (16x720 pixels = 1 row of 45 MB’s) are
buffered. This result is obtained by observing the following. First,
at any time instance, 9 segments are being processed by the PEs
in parallel. If these 9 segments are taken from a row of MB’s
within a superblock (1x9 MB’s), then shuffling requires that 4
addition rows of MB’s be retrieved to formulate the segments.
Refreshing specific regions in the sensor area introduces 2 dimen-
sions of addressing overheads. Rather, 1 dimension (row-wise)
addressing overhead can be achieved by computing an entire row
(1x45 MB’s) of pixels before retrieving the next row. 6 rather than
5 rows of MB’s must be buffered due to the geometry of the shuf-
fled MB’s.

3.6 Lookup Memories
DV requires greater flexibility and amount of looking up coeffi-
cients due to quantization strategy searches. A power, area, and
performance efficient architectural solution is required to support
lookup memory update as well as access. In our design, shared
lookup memories are provided to reduce the power and area over-
head, and lookup coefficients are pipelined to reduce routing
overhead.

3.7 Post-compression Coding
Final packaging/formatting of compressed data requires that the
MBs be stored in sync blocks, error correction coded and channel
modulation coded. It is desirable to incorporate error and channel
coding onto the camera chip so as to reduce the power overhead
incurred by data transfer to external processing units. Internally,
error correction and channel modulation can be performed either
at the controller level or in hardware since channel encoding hard-
ware is simpler than decoding for ECC, which is the opposite for
source coding.

3.8 PE Performance
Each individual PE consumes approximately 1 mW of power at a
clock rate of 40 MHz and a supply voltage of 1.5V in a 0.2 micron
CMOS technology. This amounts to a total power consumption
for the array processors of approximately 45 mW. The number of
cycles necessary to perform DV encoding for the 625/25 system
at 25 fps is estimated to be 35 MIPs.

4. PROGRAMMING CONSIDERATIONS
The proposed architecture requires a different programming
methodology than the conventional single processor and parallel
DSP architectures. Programming complexity is often introduced
with added architectural parallelism. Complexity in parallel sys-
tems normally reside in determining the optimal partitioning of
resources and in synchronization of signal flow. The proposed
architecture takes advantage of the high repetitiveness of image
processing algorithms and the large-scale parallelism of the PEs

to achieve full utilization of processing resources. The proposed
architecture also achieves low programming complexity by sepa-
rating processing and synchronization codes. This enables pro-
grammers to code PE almost independently of the MC.

Programming complexity can further be reduced by categorizing
the data dependency of the image processing algorithm. Data
independent codes can be pipelined and executed by the PEs on
the fly. Data dependent codes must be stored in local PE program
RAM. Also, local execution of data dependent algorithms incurs
controlling overhead at the global level since new instructions
cannot be pipelined until all processors have completed local exe-
cution. Converting data dependent codes into data independent
codes is an alternative that may offer better performance. As a
result, data dependency is correlated with the programming com-
plexity for this architecture.

5. CONCLUSION
This paper proposes a parallel architecture for a single-chip digi-
tal CMOS video camera with real-time DV encoding and stream-
ing capability. This architecture encompasses new technological
developments in process technology, embedded DRAM, and
CMOS image sensors to achieve a low power, highly computa-
tionally efficient solution to address the issue of integrated image
sensing.

6. REFERENCES
[1] P.H.N. de With, et. al., “Design Considerations of the Video

Compression System of the New DV Camcorder Standard”,
IEEE Transactions on Consumer Electronics, Vol. 43, No. 4,
November 1997.

[2] Jeff Y.F. Hsieh and Teresa H.Y. Meng, “Low-power MPEG2
Encoder Architecture for Digital CMOS Camera”,Proceed-
ings of the 1998 IEEE Symposium on Circuit and Systems,
Session WAA4-8.

[3] Francky Catthoor, “Power-efficient data storage and transfer
methodologies: current solutions and remaining problems”,
Proceedings of the IEEE Computer Society Workshop on
VLSI, Orlando, Florida, april 1998, pp. 53-59.

[4] Teresa H.Y. Meng, Benjamin M. Gordon, Ely K. Tsern, and
Andy C. Hung, “Portable Video-on-Demand in Wireless
Communication,” invited paper,Proceedings of IEEE, Vol.
83, No. 4, pp. 659-680, april 1995.

0
1
2
3
4
5
6
7
8
9

10
11

tr
ac

k 
i

column j
1 2 3 40

720 pixels, 45 MB’s

57
6 

lin
es

, 3
6 

M
B

’s

Figure 4:Optimized buffering of pixel data for MB shuffling.

ba c d

f

e

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e

e

f

f

f

f


