
ABSTRACT

Methods for blind source separation (BSS) from linear
instantaneous signal mixtures have drawn a significant attention
due to their ability to recover original independent non-Gaussian
sources without analyzing their temporal statistics. Hence,
original voices or images (modulo permutation and linear
scaling) are extracted from their mixtures without modeling the
dynamics of the signals. The typical methods for performing
blind source separation are Linear Independent Component
Analysis (ICA) and the InfoMax method. Linear ICA directly
penalizes a suitably chosen measure of the statistical dependence
between the extracted signals. These measures are either
obtained from the Information theoretic postulates such as the
mutual information or from the cumulant expansion of the
associated probability density functions. The InfoMax method is
based on the entropy maximization of the non-linear
transformation of the separated signals.

This paper analyzes extensions of the instantaneous blind source
separation techniques to the case of linear dynamic signal
mixtures. Furthermore, the paper introduces a novel method
based on combining Time Delayed Decorrelation (TDD) with
the minimization of the cumulant cost function. TDD is used to
obtain an acceptable initial condition for the cumulant based cost
function optimization in order to reduce the numerical
complexity of the latter method. This combined approach is
illustrated on two examples including a real life cocktail party
example.
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1. INTRODUCTION

The problems of independent feature extraction and blind signal
separation are closely related. The goal of feature extraction is
the identification of statistically independent variables which
“span” the original data space. A typical example is PCA in the
case of linearly mixed gaussian input variables. Hence, in the
latter case, the uniqueness of extracted features is not of primary
interest but their independence. On the contrary, blind signal
separation tries to extract original sources from the available
signal mixtures. The only available information is that the
original sources were statistically independent while, differently
from the standard blind channel equalization problem, their

probability density functions are not known. Consequently, it is
obvious that the Blind Source Separation can be seen as the
independent feature extraction problem with the constraint that
the obtained features are unique modulo allowed transformation
such as linear scaling, delay, and permutation.

In order to pose BSS as a learning problem, an appropriate cost
function that provides a direct or an indirect measure of
statistical dependence has to be defined. The typical approaches
are:

i) minimization of the mutual information between the outputs
of the linear transformation [1],[2]

ii) maximization of entropy at the output of non-linearities
applied individually to the output of the demixing
transformation [3],[4],[5]

iii) minimization of the magnitude of the non-diagonal cumulant
elements (cross-cumulants) [1],[2] of the joint distribution at the
output of the demixing transformation, and

iv) simultaneous minimization of cross-correlation between the
output signals at different delays (TDD)[6].

The cumulant cost function penalizes the cross-cumulant
elements at the cumulant orders 2-4 [1],[2]:

(1)

In the case of instantaneous mixing, suitable preprocessing and
scaling significantly simplify the cost function in (1):

(2)

since the minimization of all cross-cumulants (non-diagonal
elements of cumulant tensors) is substituted with maximization
of significantly fewer diagonal elements [7]. The scaling
matrices  and  are obtained from the singular value
decomposition of the covariance matrix of .

In the following part of the paper, two different application of
the BSS from of linear dynamic mixtures are presented. The first
application is the so called Blind Deconvolution of a white noise
signal filtered through an unknown linear filter. The second
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application is the separation of two signals mixed through an
unknown transfer function matrix.

2. BLIND DECONVOLUTION OF THE
SINGLE-INPUT SINGLE-OUTPUT

SYSTEM

Let a white non-Gaussian noise sequence  be filtered
through an unknown stable invertible single-input single-output
system  producing an output . Due to convolution, the
output of  is:

(3)

where  is the corresponding impulse response. The goal is to
identify a stable linear system described by a its finite-length
impulse response  which when subjected
to the input sequence  produces a white noise sequence

. The blind deconvolution problem can then be easily
converted into a standard instantaneous blind source separation
problem where the demixing matrix  is of dimension

 and it has the following structure of a causal
convolution matrix:

(4)

Hence, the blind deconvolution problem with the non-gaussian
white noise at the input can be seen as a standard instantaneous
BSS problem with a restriction on the demixing matrix. The
demixing is achieved when the outputs are decorrelated, i.e.
white.

3. MULTI-CHANNEL DYNAMIC SIGNAL
SEPARATION

The multi-channel blind source separation problem of dimension
two is depicted in Figure 1.

The mixing system , where  stands for a unit delay, is
assumed to be stable and to have a stable inverse, i.e. that it is a
minimum-phase system. Moreover, the input signals  and

 are assumed to be statistically independent and non-
Gaussian. The signals  and  are inputs into a
demixing system M(q) whose parameters are trained to maximize
the statistical independence between the output signals
and .

There are several issues that are specific to the dynamic BSS:

(i) stability of the demixing system. This is trivially achieved
when M(q) is restricted to have a finite impulse response.
Otherwise, stability of IIR system M(q) can be guaranteed during
the learning phase by projection into the unit circle. Possible non-
causality of the inverse of  might be handled by appropriate
time shift (delay) of the input sequence .

(ii) Uniqueness of the separated signals . In the case of the
instantaneous (static) mixtures, the original sources are recovered
modulo perturbation and scaling. In the case of dynamical
demixing, the non-uniqueness is even more present. It is obvious
that if  and  are independent, than any linearly
filtered versions of these signals will still be independent. Hence,
additional information is needed in order to reduce the inherent
non-uniqueness of the problem.

(iii) gaussianization of the data.The cumulant based algorithms
for static blind source separation effectively minimize the higher-
order cross-cumulants corresponding to the output signals .
On the other hand, linear filtering leads to the “gaussianization”
of the data where the higher order cumulants tend to zero.
Consequently, this can lead to spurious solutions where the cost
function achieves the minimum while the separation did not take
place. In order to prevent this degenerative case, we will restrict
the structure of the demixing transfer function matrix .

From now on, we will assume that  and
. This assumption will be exact if the mixing

elements  and  were also equal to identity.
Otherwise, we will assume that  and  have
stable inverses which will enable us to scale diagonal elements of

 to one. This assumption will substantially reduce the
non-uniqueness of the BSS solution and would effectively avoid a
possibility of extensive gaussianization of the output signals.
Although the restriction on the diagonal elements of  may
initially look very restrictive, there are plenty of real life
examples where it is satisfied. A typical example is the denoising
of speech signals based on two-microphone recording where one
microphone is pointed towards the speaker while the other
microphone is pointed in the opposite direction and its primary
role is too obtain the noise signal.

Theoretically speaking, any of the BSS algorithms for the static
(instantaneous) case can be applied to the dynamic signal
separation but on the expense of the increased numerical
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Figure 1. Mixing - Demixing Scheme
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complexity. The information maximization method suffers from
the lack of clear relationship between the input and output joint
probability density functions which makes the learning rule more
complex than in the instantaneous mixing problem. Similarly, the
simplified cumulant based method in (2) cannot be applied since
there is no dynamic preprocessing that preserves the Frobenius
norm of the cumulant tensors. Hence, the cumulant approach
must be based on direct evaluation of the cross-cumulants as
defined in (1) which can be numerically expensive. Therefore, in
order to use cumulant BSS method, an appropriate initialization
is needed.

The TDD method in the case of simultaneous decorrelation at
two different time delays is related to an appropriate matrix
eigenvalue problem [6]. We will use this approach to initiate the
cross-cumulant minimization problem. Hence, our combined
approach is:

1) repeat the TDD method based on the eigenvalue problem in the
frequency domain for several pairs of delays and pick the solution
where the two cross-correlation terms are minimal

2) start the cross-cumulant minimization with the initial FIR
parameters from the previous step.

This approach is illustrated in the following section on two
examples. The first example is an artificial example where the
quality of the extracted signals can be explicitly checked while
the second example is a real life cocktail party example based on
the recordings obtained from [8].

4. EXAMPLES

In the first example, the mixing transfer function matrix is
defined as:

(5)

As stated before,  stands for a unit delay. Hence, a
transformation to the standard  domain is carried out by
substituting  by . The original independent sources are two
voice signals from 2 different speakers sampled at 8000Hz. The
transfer function matrix is stable and has a stable inverse.

The TDD eigenvalue method was run for several delays and the
best results were obtained for the delay of 96 samples while the
window size for frequency evaluation was equal to 256 points.
The first 6 elements of the obtained impulse response for

 and  were used as the initial values for the
cross-cumulant minimization approach.

The quality of the obtained demixing transfer function matrix
 can be checked by computing the impulse response of the

product  which is depicted in Figure 2. The scaling
 was not carried out because it does not

affect the independence if it is achieved and, in this case, it did
not influence the hearing quality of the recovered voices. From

Figure 2 it is visible that all the elements of the transfer functions
 and  are close to zero what indicates that the

original signals were successfully recovered.

The second example is taken from [8]. In this example two
speakers were recorded speaking simultaneously. The first
speaker was counting from one to ten in English while the other
was doing the same but in Spanish. The recording was performed
in a normal office room with distance between speaker and the
microphones of 60cm in square ordering.

The recovery of original voices was carried out successfully. The
mixed and recovered signals are depicted in Figure 3.

5. CONCLUSION

Blind Signal Separation from dynamic mixtures is considerably
more complex than the problem of instantaneous signal mixtures.
In this paper we have mentioned the existing methods for
instantaneous BSS and discussed additional difficulties arising in
the case of dynamic mixtures. A novel method based on
combining time delayed decorrelation and the cross-cumulant
minimization is introduced. The TDD method is repeated for
different delays until suitable values for the FIR elements of the
demixing transfer function matrix are found. The obtained
transfer function matrix is then used as the initial condition for
the further cross-cumulant minimization. The effectiveness of
this combined method is illustrated on two examples including a
real life cocktail-party example.
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Figure 2. Impulse response of the combined mixing-demixing systems
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Figure 3. Mixed and recovered signals in the cocktail party example


